Skip to main content
Log in

Nutritional value and production performance of the rotifer Brachionus plicatilis Müller, 1786 cultured with different feeds at commercial scale

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The rotifer Brachionus plicatilis is the first live feed in larviculture of marine fish species. Rotifer diets differ in their biochemical composition, physical properties, and production technology while feeding protocols largely vary among facilities. The objective of the present study was to determine the effects of two different forms of Nannochloropsis oculata and commonly used commercial diets on growth performance and biochemical composition of rotifers produced under commercial conditions. Rotifers were fed one of five different types of feed: Algome® (dried Schizochytrium sp.), Protein Plus® (PP), Inactive Baker’s Yeast® (INBY), spray-dried Nannochloropsis oculata (SDN), or freshly cultured Nannochloropsis oculata (FN). Rotifers fed SDN diet resulted in significantly higher rotifer biomass during 16 days of semi-continuous culture, with an increasing biomass trend that lasted 11 days, high egg production, and egg-carrying female numbers, whereas rotifers fed PP showed highest ∑n-3, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid contents. Amino acid profiles of rotifers were enhanced by utilization of both INBY and SDN diets. Overall, the results indicated that SDN is optimal for long-term biomass production of rotifers. However, their nutritional profile needs to be enriched by feeding PP (EFA source) and INBY (EAA source) once desired biomass production is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HUFA:

Highly unsaturated fatty acids

PP:

Protein Plus®

INBY:

Inactive Baker’s Yeast®

SDN:

Spray-dried Nannochloropsis oculata

FN:

Fresh Nannochloropsis oculata

ARA:

Arachidonic acid

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

LA:

Linoleic acid

LNA:

Linolenic acid

References

  • Association of Official Analytical Chemists (AOAC) (2010) Official methods of analysis, 18th edn., revision 3 edition. AOAC, Washington, District of Colombia, USA

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Bransden MP, Butterfield GM, Walden J, McEvoy LA, Bell JG (2005) Tank colour and dietary arachidonic acid affects pigmentation, eicosanoid production and tissue fatty acid profile of larval Atlantic cod (Gadus morhua). Aquaculture 250:328–340

    Article  CAS  Google Scholar 

  • Cavonius LR, Albers E, Undeland I (2015) pH-shift processing of Nannochloropsis oculata microalgal biomass to obtain a protein-enriched food or feed ingredient. Algal Res 11:95–102

    Article  Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F, Nokihara K (1996) Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem 44:2619–2623

    Article  Google Scholar 

  • Cheng SH, Kâ S, Kumar R, Kuo CS, Hwang JS (2011) Effects of salinity, food level, and the presence of microcrustacean zooplankters on the population dynamics of rotifer Brachionus rotundiformis. Hydrobiologia 666:289–299

    Article  CAS  Google Scholar 

  • Cho SH, JI SC, Hur SB, Bae J, Park IS, Song YC (2007) Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fish Sci 73:1050–1056

    Article  CAS  Google Scholar 

  • Christie WW (1982) Lipid analysis, 2nd edn. Permagon Press, Oxford

    Google Scholar 

  • Conceição LEC, Grasdalen H, Rønnestad I (2003) Amino acid requirements of fish larvae and post-larvae: new tools and recent findings. Aquaculture 227:221–232

    Article  CAS  Google Scholar 

  • Conceição LE, Yúfera M, Makridis P, Morais S, Dinis MT (2010) Live feeds for early stages of fish rearing. Aquac Res 41:613–640

    Article  Google Scholar 

  • Dhert P, Rombaut G, Suantika G, Sorgeloos P (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200:129–146

    Article  Google Scholar 

  • Dhert P, King N, O'brien E (2014) Stand-alone live food diets, an alternative to culture and enrichment diets for rotifers. Aquaculture 431:59–64

    Article  CAS  Google Scholar 

  • Dhont J, Dierckens K, Støttrup J, Van Stappen G, Wille M, Sorgeloos P (2013) Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture. Advances in Aquaculture Hatchery Technology 157–202

  • Eryalçın KM, Roo J, Saleh R, Atalah E, Benítez T, Betancor M, Hernandez Cruz M, Izquierdo M (2013) Fish oil replacement by different microalgal products in microdiets for early weaning of gilthead sea bream (Sparus aurata, L.). Aquac Res 44:819–828

    Article  CAS  Google Scholar 

  • Eryalçın KM, Ganuza E, Atalah E, Cruz MCH (2015) Nannochloropsis gaditana and Crypthecodinium cohnii, two microalgae as alternative sources of essential fatty acids in early weaning for gilthead seabream. Hidrobiológica 25:193–203

    Google Scholar 

  • Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A (2009) Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Mar Biotechnol 11:585–595

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Ganuza E, Anderson AJ, Ratledge C (2008) High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotechnol Lett 30:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Garcia AS, Parrish CC, Brown JA (2008) A comparison among differently enriched rotifers (Brachionus plicatilis) and their effect on Atlantic cod (Gadus morhua) larvae early growth, survival and lipid composition. Aquac Nutr 14:14–30

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7-8):491–515

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Haas S, Bauer JL, Adakli A, Meyer S, Lippemeier S, Schwarz K, Schulz C (2016) Marine microalgae Pavlova viridis and Nannochloropsis sp. as n-3 PUFA source in diets for juvenile European sea bass (Dicentrarchus labrax L.). J Appl Phycol 28:1011–1021

    Article  CAS  Google Scholar 

  • Haché R, Plante S (2011) The relationship between enrichment, fatty acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis L-strain) and Artemia (Artemia salina strain Franciscana). Aquaculture 311(1–4):201–208

    Article  CAS  Google Scholar 

  • Hamre K (2016) Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture 450:136–142

    Article  CAS  Google Scholar 

  • Hamre K, Srivastava A, Rønnestad I, Mangor Jensen A, Stoss J (2008) Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquac Nutr 14:51–60

    Article  CAS  Google Scholar 

  • Hamre K, Yúfera M, Rønnestad I, Boglione C, Conceição LE, Izquierdo M (2013) Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev Aquac 5:26–58

    Article  Google Scholar 

  • Harel M, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J, Zohar Y, Place AR (2002) Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture 213:347–362

    Article  CAS  Google Scholar 

  • Hawkyard M, Stuart K, Langdon C, Drawbridge M (2016) The enrichment of rotifers (Brachionus plicatilis) and Artemia franciscana with taurine liposomes and their subsequent effects on the larval development of California yellowtail (Seriola lalandi). Aquac Nutr 22:911–922

    Article  CAS  Google Scholar 

  • Hemaiswarya S, Raja R, Kumar RR, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746

    Article  Google Scholar 

  • Izquierdo MS, Koven W (2011) Lipids. Larval fish nutrition. Wiley-Blackwell, John Wiley and Sons Publisher, Oxford

  • Izquierdo MS, Watanabe T, Takeuchi T, Arakawa T, Kitajima C (1990) Optimal EFA levels in Artemia to meet the EFA requirements of red seabream (Pagrus major). In: Takeda M, Watanabe T (eds) The current status of fish nutrition in aquaculture. Tokyo University Fisheries, Tokyo, pp 221–232

    Google Scholar 

  • Ju ZY, Deng DF, Dominy W (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 354:50–55

    Article  CAS  Google Scholar 

  • Knuckey RM, Semmens GL, Mayer RJ, Rimmer MA (2005) Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249:339–351

    Article  Google Scholar 

  • Li P, Mai K, Trushenski J, Wu G (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37(1):43–53

  • Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potentialadvantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquacul 133:295–309

  • Ma Z, Qin JG (2014) Replacement of fresh algae with commercial formulas to enrich rotifers in larval rearing of yellowtail kingfish Seriola lalandi (Valenciennes, 1833). Aquac Res 45:949–960

    Article  CAS  Google Scholar 

  • Maisashvili A, Bryant H, Richardson J, Anderson D, Wickersham T, Drewery M (2015) The values of whole algae and lipid extracted algae meal for aquaculture. Algal Res 9:133–142

    Article  Google Scholar 

  • Matsunari H, Hashimoto H, Oda K, Masuda Y, Imaizumi H, Teruya K, Furuita H, Yamamato T, Yamamato T, Hamada K, Mushiake K (2012) Effect of different algae used for enrichment of rotifers on growth, survival, and swim bladder inflation of larval amberjack Seriola dumerili. Aquac Int 20:981–992

    Article  Google Scholar 

  • Nanton DA, Castell JD (1999) The effects of temperature and dietary fatty acids on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture 175:167–181

    Article  CAS  Google Scholar 

  • Norsker NH, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  Google Scholar 

  • Park HG, Puvanendran V, Kellett A, Parrish CC, Brown JA (2006) Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua). ICES J Mar Sci 63(2):285–295

    Article  CAS  Google Scholar 

  • Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac Int 15:1–9

    Article  CAS  Google Scholar 

  • Patterson D, Gatlin DM (2013) Evaluation of whole and lipid-extracted algae meals in the diets of juvenile red drum (Sciaenops ocellatus). Aquaculture 416:92–98

    Article  CAS  Google Scholar 

  • Pedro C, Fernandez-Diaz JC (2001) Pilot evaluation of freeze-dried microalgae in the mass rearing of gilthead seabream (Sparus aurata) larvae. Aquaculture 193:257–269

    Article  Google Scholar 

  • Qie G, Reitan KI, Evjemo JO, Støttrup J, Olsen Y (2011) Live feeds. Larval Fish Nutrition 307–334

  • Rainuzzo JR, Reitan KI, Olsen Y (1997) The significance of lipids at early stages of marine fish: a review. Aquaculture 155:103–115

    Article  CAS  Google Scholar 

  • Rasdi NW, Qin JG (2016) Improvement of copepod nutritional quality as live food for aquaculture: a review. Aquac Res 47:1–20

    Article  Google Scholar 

  • Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221

    Article  Google Scholar 

  • Ringø E, Olsen RE, Jensen I, Romero J, Lauzon HL (2014) Application of vaccines and dietary supplements in aquaculture: possibilities and challenges. Rev Fish Biol Fish 24:1005–1032

    Article  Google Scholar 

  • Rocha RJ, Ribeiro L, Costa R, Dinis MT (2008) Does the presence of microalgae influence fish larvae prey capture? Aquac Res 39:362–369

    Article  Google Scholar 

  • Rocha GS, Katan T, Parrish CC, Gamperl AK (2017) Effects of wild zooplankton versus enriched rotifers and Artemia on the biochemical composition of Atlantic cod (Gadus morhua) larvae. Aquaculture 479:100–113

    Article  CAS  Google Scholar 

  • Rothhaupt KO (1995) Algal nutrient limitation affects rotifer growth rate but not ingestion rate. Limnol Oceanogr 40:1201–1208

    Article  CAS  Google Scholar 

  • Ryckebosch E, Muylaert K, Eeckhout M, Ruyssen T, Foubert I (2011) Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum. J Agric Food Chem 59:11063–11069

    Article  CAS  PubMed  Google Scholar 

  • Sales R, Mélo RCS, de Moraes RM, da Silva RCS, Cavalli RO, Navarro DMDAF, Souza Santos LP (2016) Production and use of a flocculated paste of Nannochloropsis oculata for rearing newborn seahorse Hippocampus reidi. Algal Res 17:142–149

    Article  Google Scholar 

  • Salvesen I, Reitan KI, Skjermo J, Qie G (2000) Microbial environments in marine larviculture: impacts of algal growth rates on the bacterial load in six microalgae. Aquac Int 8:275–287

    Article  Google Scholar 

  • Schwarz MH, Craig SR, Delbos BC, McLean E (2008) Efficacy of concentrated algal paste during greenwater phase of cobia larviculture. J Appl Aquac 20:285–294

    Article  Google Scholar 

  • Seychelles LH, Audet C, Tremblay R, Fournier R, Pernet F (2009) Essential fatty acid enrichment of cultured rotifers (Brachionus plicatilis, Müller) using frozen-concentrated microalgae. Aquac Nutr 15(4):431–439

    Article  CAS  Google Scholar 

  • Sharifah EN, Eguchi M (2011) The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS One 6(10):e26756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. J Anim Sci 21:23–37

    Google Scholar 

  • Skiftesvik AB, Browman HI, St-Pierre JF (2003) Life in green water: the effect of microalgae on the behaviour of Atlantic cod (Gadus morhua) larvae. In The Big Fish Bang. Proceedings of the 26th Annual Larval Fish Conference. Institute of Marine Research, Bergen, Norway (pp 97–103)

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Srivastava A, Hamre K, Stoss J, Chakrabarti R, Tonheim SK (2006) Protein content and amino acid composition of the live feed rotifer Brachionus plicatilis: with emphasis on the water soluble fraction. Aquaculture 254:534–543

    Article  CAS  Google Scholar 

  • Taniguchi A, Sharifah NE, Eguchi M (2011) Possible role of microalga Nannochloropsis in controlling Vibrio species in fish larva rearing water. Aquacult Sci 59:451–458

    Google Scholar 

  • Tendencia EA, Bosma RH, Verdegem MC, Verreth JA (2015) The potential effect of greenwater technology on water quality in the pond culture of Penaeus monodon Fabricius. Aquac Res 46:1–13

    Article  CAS  Google Scholar 

  • Tibaldi E, Zittelli GC, Parisi G, Bruno M, Giorgi G, Tulli F, Venturini S, Tredici MR, Poli BM (2015) Growth performance and quality traits of European sea bass (D. labrax) fed diets including increasing levels of freeze-dried Isochrysis sp.(T-ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture 440:60–68

    Article  CAS  Google Scholar 

  • Van der Meeren T, Mangor-Jensen A, Pickova J (2007) The effect of green water and light intensity on survival, growth and lipid composition in Atlantic cod (Gadus morhua) during intensive larval rearing. Aquaculture 265:206–217

    Article  Google Scholar 

  • Vigani M, Parisi C, Rodríguez-Cerezo E, Barbosa MJ, Sijtsma L, Ploeg M, Enzing C (2015) Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci Technol 42:81–92

    Article  CAS  Google Scholar 

  • Walker AB, Berlinsky DL (2011) Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. N Am J Aquac 73:76–83

    Google Scholar 

  • Yin XW, Min WW, Lin HJ, Chen W (2013) Population dynamics, protein content, and lipid composition of Brachionus plicatilis fed artificial macroalgal detritus and Nannochloropsis sp. diets. Aquaculture 380:62–69

    Article  CAS  Google Scholar 

  • Yoshimatsu T, Hossain MA (2014) Recent advances in the high-density rotifer culture in Japan. Aquac Int 22:1587–1603

    Article  Google Scholar 

Download references

Acknowledgements

Nihan Arığ and Kadir Vardı are acknowledged for helping during experiments. The author also thank Prof. Marisol Izquierdo for very helpful comments

Funding

This work was supported by Tubitak-Teydeb 1507 Kobi-Arge Project No. 7170299 (The Scientific and Technological Research Council of Turkey) and Istanbul University, Research Foundation Project No. 29086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Mert Eryalçın.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eryalçın, K.M. Nutritional value and production performance of the rotifer Brachionus plicatilis Müller, 1786 cultured with different feeds at commercial scale. Aquacult Int 27, 875–890 (2019). https://doi.org/10.1007/s10499-019-00375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00375-5

Keywords

Navigation