Skip to main content

Advertisement

Log in

Effects of fish farming on macrophytes in temperate carp ponds

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Anthropogenic impacts on carp pond environments have increased over the last 100–150 years in Central Europe. Present semi-intensive carp pond management combines natural food resources, supplementary feeding and additional intensification measures such as manuring, liming, and winter and summer drainage. Despite increased eutrophication and fish stock pressure, many carp ponds still serve as habitats for threatened biota, including macrophytes. Both the ecologically essential role of aquatic macrophytes and the impacts that reared fish may have on them have been repeatedly reported in the literature; however, information is scattered and there exists no multidisciplinary synthesis of knowledge of fish farming and plant interactions for European carp ponds. In this review, we show that macrophytes from different ecological groups have specific demands regarding optimal ecological conditions (e.g. pH and trophy level); hence, they can act as indicators of a water body’s ecological status. Nevertheless, the overall ecological ranges of many species (i.e. the limits enabling their survival) remain rather broad. Moreover, interactions between the different elements within carp pond ecosystems are complex and change rapidly, facilitating the co-existence of macrophytes with contradictory ecological demands. As the literature suggests, carp ponds may play a role in biodiversity protection that is just as important (or even more so) than that of natural wetlands. Sustainable, environmentally friendly carp pond management is undoubtedly the best means of preserving the unique natural and cultural value of these aquatic ecosystems for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamec L (1997) Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. Aquat Bot 59:297–306

    Article  CAS  Google Scholar 

  • Adámek Z (2014) Hydrobiology in Fisheries. In: Adámek Z et al (eds) Applied Hydrobiology. University of South Bohemia, Faculty of Fisheries and Protection of Waters, Vodňany, pp 307–348

    Google Scholar 

  • Adámek Z, Maršálek B (2013) Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquac Int 21:1–17

    Article  Google Scholar 

  • Adámek Z, Sanh TD (1981) The food of grass carp fry (Ctenopharyngodon idella) in southern Moravian fingerling ponds. Folia Zool 30:263–270

    Google Scholar 

  • Adámek Z et al (2003) Food competition between 2+ tench (Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus cyprinellus Val.) in pond polyculture. J Appl Ichthyol 19:165–169

    Article  Google Scholar 

  • Adámek Z et al (2012) Aquaculture in the Czech Republic in 2012: modern European prosperous sector based on thousand-year history of pond culture. World Aquacult 43:20–27

    Google Scholar 

  • Adámek Z, Mössmer M, Bauer C (2015) Current issues and principles of common carp (Cyprinus carpio) organic farming in Europe. An overview. Paper presented at the 7th international conference on Water & Fish, University of Belgrade, Belgrade, 10–12 June 2015

  • Anton-Pardo M et al (2014) Natural diet of mirror and scaly carp (Cyprinus carpio) phenotypes in earth ponds. Folia Zool 63:229–237

    Article  Google Scholar 

  • Bacon C et al (2012) The social dimensions of sustainability and change in diversified farming systems. Ecol Soc 17:41

    Article  Google Scholar 

  • Badiou PHJ, Goldsborough LG (2015) Ecological impacts of an exotic benthivorous fish, the common carp (Cyprinus carpio L.), on water quality, sedimentation, and submerged macrophyte biomass in wetland mesocosms. Hydrobiologia 755:107–121

    Article  CAS  Google Scholar 

  • Barko JW, Smart RM (1981) Sediment-based nutrition of submersed macrophytes. Aquat Bot 10:339–352

    Article  CAS  Google Scholar 

  • Barko JW, Smart RM (1983) Effects of organic-matter additions to sediment on the crowth of aquatic plants. J Ecol 71:161–175

    Article  CAS  Google Scholar 

  • Bernhardt KG et al (2008) Comparison of two methods characterising the seed bank of amphibious plants in submerged sediments. Aquat Bot 88:171–177

    Article  Google Scholar 

  • Bican J et al (1986) Ecology of fishpond vegetation. In: Hejný S, Raspopov M, Květ J (eds) Studies on shallow lakes and ponds. Academia, Praha, pp 171–230

    Google Scholar 

  • Böckelmann J et al (2017) Fitness and growth of the ephemeral mudflat species Cyperus fuscus in river and anthropogenic habitats in response to fluctuating water-levels. Flora 234:135–149

    Article  Google Scholar 

  • Breukelaar AW et al (1994) Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshw Biol 32:113–121

    Article  Google Scholar 

  • Brönmark C, Vermaat JE (1998) Complex fish snail epiphyton interactions and their effects on submerged freshwater macrophytes. In: Jeppesen et al (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 47–68

    Chapter  Google Scholar 

  • Broyer J, Curtet L (2012) Biodiversity and fish farming intensification in French fishpond systems. Hydrobiologia 694:205–218

    Article  Google Scholar 

  • Caffrey JM et al (2010) A novel approach to aquatic weed control and habitat restoration using biodegradable jute matting. Aquat Invasions 5:123–129

    Article  Google Scholar 

  • Chytrý M (2011) Vegetace České republiky 3. Vodní a mokřadní vegetace. Academia, Praha

    Google Scholar 

  • Chytrý M et al (2005) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77:339–354

    Google Scholar 

  • Cooke SJ et al (2016) On the sustainability of inland fisheries: finding a future for the forgotten. Ambio 45:753–764

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronk JK, Fennessy MS (2016) Wetland plants: biology and ecology. CRC press, Boca Raton

    Book  Google Scholar 

  • Den Hartog C, Segal S (1964) A new classification of the water plant communities. Acta Botanica Neerlandica 13:367–393

    Article  Google Scholar 

  • Duarte SV (2017) Can aquatic plants keep pace with climate change? Front Plant Sci 8:1906

    Article  Google Scholar 

  • Dubravius J (1953) O rybnících. Nakl. Československé akademie věd, Praha

    Google Scholar 

  • Dykyjová D, Květ J (eds) (1978) Pond littoral ecosystems: structure and functioning: methods and results of quantitative ecosystem research in the Czechoslovakian IBP wetland project. Springer-Verlag, Berlin

    Google Scholar 

  • Ficke AD et al (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613

    Article  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • Hájková P et al (2011) Prehistoric origin of the extremely species-rich semi-dry grasslands in the bile Karpaty Mts (Czech Republic and Slovakia). Preslia 83:185–204

    Google Scholar 

  • Hartman P, Schmidt G, Pietsch C (2015) Carp aquaculture in Europe and Asia. In: Pietsch C, Hirsch P (eds) Biology and ecology of carp. CRC Press, Boca Raton, pp 57–89

    Chapter  Google Scholar 

  • Hartman P et al (2016) Calcium content in pond sediment and its effect on neutralizing capacity of water and fish production. Aquac Int 24:1747–1754

    Article  CAS  Google Scholar 

  • Hassall C et al (2012) Temporal dynamics of aquatic communities and implications for pond conservation. Biodivers Conserv 21:829–852

    Article  Google Scholar 

  • Hejný S (1960) Ökologische Charakteristik der Wasser und Sumpfpflanzen in den Slowakischen Tiefebennen. Verlag der Slowakischen Akademie der Wissenschaften, Bratislava

    Google Scholar 

  • Hejný S (1978a) Conservation of plant communities in fishpond littorals. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems: structure and functioning: methods and results of quantitative ecosystem research in the Czechoslovakian IBP wetland project. Springer-Verlag, Berlin, pp 429–433

    Google Scholar 

  • Hejný S (1978b) Management aspects of fishpond drainage. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems: structure and functioning: methods and results of quantitative ecosystem research in the Czechoslovakian IBP wetland project. Springer-Verlag, Berlin, pp 397–403

    Google Scholar 

  • Hejný S, Husák Š, Jeřábková O, Ostrý I (1982) Anthropogenic impact on fishpond flora and vegetation. In: Gopal B, Turner RE, Wetzel RG, Whigham DF (eds) Wetlands: Ecology and management. National Institute of Ecology, Jaipur, pp 425–433

  • Hejný S (1990) Dynamic changes in the macrophyte vegetation of South Bohemian fishponds after 35 years. Folia Geobot Phytotaxon 25:245–255

    Article  Google Scholar 

  • Hejný S (2000) Rostliny vod a pobřeží. East West Publishing Company, Praha

    Google Scholar 

  • Hejný S, Hroudová Z, Květ J (2002) Fishpond vegetation: an historical view. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future: a case study of the Třeboň Basin Biosphere Reserve, Czech Republic. UNESCO, Paris, pp 63–95

    Google Scholar 

  • Hilt S et al (2006) Restoration of submerged vegetation in shallow eutrophic lakes: a guideline and state of the art in Germany. LIMNOLOGICA 36:155–171

    Article  CAS  Google Scholar 

  • Hoffmann RC (1996) Economic development and aquatic ecosystems in medieval Europe. Am Hist Rev 101:631–669

    Article  Google Scholar 

  • Hoffmann MA et al (2013) Experimental weed control of Najas marina spp. intermedia and Elodea nuttallii in lakes using biodegradable jute matting. J Limnol 72:39

    Article  Google Scholar 

  • Hofstra DE, Clayto J (2012) Assessment of benthic barrier products for submerged aquatic weed control. J Aquat Plant Manage 50:101–105

    Google Scholar 

  • Horváth L, Seagrave CH, Tamás G (1992) Carp and pond fish culture: including Chinese herbivorous species, pike, tench, zander, wels catfish, and goldfish. Fishing News Books, Oxford

    Google Scholar 

  • Husák Š, Kaplan Z, Chrtek J (2010) Vallisneria L. – zákruticha (valisnérie). In: Štěpánková J, Chrtek J, Kaplan Z (eds) Květena České republiky 8. Academia, Praha

    Google Scholar 

  • Jawecki B et al (2013) The spatial variation of oxygen condition in carp pond located in nature reserve “Stawy Milickie”. J Water Land Dev 19:47–52

    Article  CAS  Google Scholar 

  • Jeffries MJ (2012) Ponds and the importance of their history: an audit of pond numbers, turnover and the relationship between the origins of ponds and their contemporary plant communities in south-east Northumberland, UK. Hydrobiologia 689:11–21

    Article  Google Scholar 

  • Jeppesen E et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941

    Article  CAS  PubMed  Google Scholar 

  • Juříček M (2012) Flora and vegetation of fishponds in the Bohemian-Moravian Highlands. Acta Rer Natur 13:33–51

    Google Scholar 

  • Kaplan Z et al (2016) Distributions of vascular plants in the Czech Republic. Part 2. Preslia 88:229–322

    Google Scholar 

  • Kaplan Z et al (2017) Distributions of vascular plants in the Czech Republic. Part 5. Preslia 89:333–439

    Article  Google Scholar 

  • Kaplan Z et al (2018) Distributions of vascular plants in the Czech Republic. Part 7. Preslia 90: 425–431

  • Kestemont P (1995) Different systems of carp production and their impact on the environment. Aquaculture 129:347–372

    Article  Google Scholar 

  • Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Klimaszyk P, Rzymski P (2016) The complexity of ecological impacts induced by great cormorants. Hydrobiologia 771:13–30

    Article  Google Scholar 

  • Kloskowski J (2011) Human-wildlife conflicts at pond fisheries in eastern Poland: perceptions and management of wildlife damage. Eur J Wildl Res 57:295–304

    Article  Google Scholar 

  • Klotz RL, Linn SA (2001) Influence of factors associated with water level drawdown on phosphorus release from sediments. Lake Reservoir Manage 17:48–54

    Article  CAS  Google Scholar 

  • Kořínek V et al (1987) Carp ponds of Central Europe. In: Michel G (ed) Managed aquatic ecosystems. Ecosystems of the world, 29. Elsevier, New York, pp 29–62

    Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136

    Article  Google Scholar 

  • Lamine C, Bellon S (2009) Conversion to organic farming: a multidimensional research object at the crossroads of agricultural and social sciences: a review. Agron Sustain Dev 29:97–112

    Article  Google Scholar 

  • Landucci F et al (2015) Formalized classification of species-poor vegetation: a proposal of a consistent protocol for aquatic vegetation. J Veg Sci 26:791–803

    Article  Google Scholar 

  • Lazartigues A et al (2013) Pesticide pressure and fish farming in barrage pond in northeastern France. Part II: residues of 13 pesticides in water, sediments, edible fish and their relationships. Environ Sci Pollut Res 20:117–125

    Article  CAS  Google Scholar 

  • Lu J et al (2018) Nutrient release and uptake by littoral macrophytes during water level fluctuations. Sci Total Environ 622:29–40

    Article  CAS  PubMed  Google Scholar 

  • Marcé R et al (2016) Automatic high frequency monitoring for improved lake and reservoir management. Environ Sci Technol 50:10780–10794

    Article  CAS  PubMed  Google Scholar 

  • Markovic D et al (2014) Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers Distrib 20:1097–1107

    Article  Google Scholar 

  • Matsuzaki SS et al (2007) Effects of common carp on nutrient dynamics and littoral community composition: roles of excretion and bioturbation. Fundam Appl Limnol 168:27–38

    Article  CAS  Google Scholar 

  • Mayer JR (1978) Aquatic weed management by benthic semi-barriers. J Aquat Plant Manage 16:31–33

    Google Scholar 

  • Miklín J, Macháček P (2016) Birds of Lednické fishponds (Czech Republic). J Maps 12:239–248

  • Morley NJ (2007) Anthropogenic effects of reservoir construction on the parasite fauna of aquatic wildlife. EcoHealth 4:374–383

    Article  Google Scholar 

  • Musil M et al (2014) Impact of topmouth gudgeon (Pseudorasbora parva) on production of common carp (Cyprinus carpio)—question of natural food structure. Biologia 69:1757–1769

    Article  Google Scholar 

  • Niederholzer R, Hofer R (1979) The adaptation of digestive enzymes to temperature, season and diet in roach Rutilus rutilus L. and Rudd Scardinius erythrophthalmus L. Cellulase. J Fish Biol 15:411–416

    Article  CAS  Google Scholar 

  • Panek F (1987) Biology and ecology of carp. In: Cooper EL (ed) Carp in North America. American Fisheries Society, Bethesda, pp 1–15

    Google Scholar 

  • Pavelková R et al (2016) Historical ponds of the Czech Republic: an example of the interpretation of historic maps. J Maps 12:1–9

    Article  Google Scholar 

  • Pechar L (2000) Impacts of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fish Manag Ecol 7:23–31

    Article  Google Scholar 

  • Pechar L, Přikril I, Faina R (2002) Hydrobiological evaluation of Třeboň fishponds since the end of 19th century. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future: a case study of the Třeboň Basin biosphere reserve. UNESCO, Paris, pp 31–61

    Google Scholar 

  • Pechar L et al (2017) Tři roky bez kapra na rybníce rod (Třeboňsko)—aneb, jak reálná je možnost zlepšit kvalitu vody a stav rybničního biotopu absencí obsádky kapra? In: Urbánek M (ed) 4. ročník odborné konference, České Budějovice, February 2017. Rybářské sdružení ČR, České Budějovice, pp 55–60

    Google Scholar 

  • Pedersen O et al (2013) Underwater photosynthesis of submerged plants—recent advances and methods. Front Plant Sci 4:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson JO et al (1974) Lake rehabilitation techniques and experiences. J Am Water Resour Assoc 10:1228–1245

    Article  CAS  Google Scholar 

  • Petr T (2000) Interactions between fish and aquatic macrophytes in inland waters—a review. FAO Fisheries Technical Paper 396, Rome

  • Podubský V (1948) Vodní, bažinné a mokřadní rostliny: Výskyt, život a význam, zvláště v rybářství. Ministerstvo zemědělství, Praha

    Google Scholar 

  • Pokorný J, Hauser V (2002) The restoration of fish ponds in agricultural landscapes. Ecol Eng 18:555–574

    Article  Google Scholar 

  • Pokorný J, Pechar L (2000) Development of fishpond ecosystems in the Czech Republic: role of management and nutrient impute (limnological review). Sylvia 35:8–15

    Google Scholar 

  • Pokorný J et al (1990) Functioning of plant component in densely stocked fish ponds. Bull Ecol 21:44–48

    Google Scholar 

  • Pokorný J et al (2002) Development of fishpond ecosystems in the Czech Republic: role of management and nutrient impute (limnological review). In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future: a case study of the Třeboň Basin biosphere reserve, Czech Republic. UNESCO, Paris, pp 97–124

    Google Scholar 

  • Pollux BJA (2011) The experimental study of seed dispersal by fish (ichthyochory). Freshw Biol 56:197–212

    Article  Google Scholar 

  • Potužák J et al (2007) Changes in fish production effectivity in eutrophic fishponds—impact of zooplankton structure. Aquac Int 15:201–210

    Article  Google Scholar 

  • Potužák J et al (2016) Mass balance of fishponds: are they sources or sinks of phosphorus? Aquac Int 24:1725–1745

    Article  Google Scholar 

  • Prejs A (1984) Herbivory by temperate freshwater fishes and its consequences. Environ Biol Fish 10:281–296

    Article  Google Scholar 

  • Přikryl I (1996) Development of fishery management of Czech ponds and its reflection in zooplankton structure as a possible criterion of biological value of ponds. In: Flajšhans M (ed) Collection of scientific work to 75. anniversary of establishment of Research Institute of Fish Culture and Hydrobiology. Research Institute of Fish Culture and Hydrobiology, Vodňany

    Google Scholar 

  • Pyšek P et al (2012) Catalogue of alien plants of the Czech Republic: checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255

    Google Scholar 

  • Rackham O (1980) Ancient woodland: its history, vegetation and uses in England. Edward Arnold, London

    Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    Article  PubMed  Google Scholar 

  • Rahman MM et al (2008) A comparative study of common carp (Cyprinus carpio L.) and calbasu (Labeo calbasu Hamilton) on bottom soil resuspension, water quality, nutrient accumulations, food intake and growth of fish in simulated rohu (Labeo rohita Hamilton) ponds. Aquaculture 285:78–83

    Article  Google Scholar 

  • Redding TA, Midlen AB (1991) Fish production in irrigation canals: a review. FAO, Rome

    Google Scholar 

  • Richert E et al (2016) Rare wetland grass (Coleanthus subtilis) in central and Western Europe—current distribution, habitat types, and threats. Acta Soc Bot Pol 85:1–16

    Article  Google Scholar 

  • Sayer C et al (2012) The role of pond management for biodiversity conservation in an agricultural landscape. Aquat Conserv Mar Freshwat Ecosyst 22:626–638

    Article  Google Scholar 

  • Schäfer-Guignier O (1994) Weiher in der Franche-Comté: Eine floristisch-ökologische und vegetationskundliche Untersuchung. Dissertationes Botanicae 213:1–239

    Google Scholar 

  • Scheffer M et al (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Sidorkewicj N et al (1998) Interaction of common carp with aquatic weeds in argentine drainage channels. J Aquat Plant Manage 36:10

    Google Scholar 

  • Siebert R, Toogood M, Knierim A (2006) Factors affecting European farmers’ participation in biodiversity policies. Sociol Rural 46:318–340

    Article  Google Scholar 

  • Spikmans F et al (2013) High prevalence of the parasite Sphaerothecum destruens in the invasive topmouth gudgeon Pseudorasbora parva in the Netherlands, a potential threat to native freshwater fish. Aquat Invasions 8:355–360

    Article  Google Scholar 

  • Sterling EJ et al (2017) Assessing the evidence for stakeholder engagement in biodiversity conservation. Biol Conserv 209:159–171

    Article  Google Scholar 

  • Stoate C et al (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46

    Article  CAS  Google Scholar 

  • Šumberová K, Ducháček M (2017) Analysis of plant soil seed banks and seed dispersal vectors: its potential and limits for forensic investigations. Forensic Sci Int 270:121–128

    Article  CAS  PubMed  Google Scholar 

  • Šumberová K et al (2005) Vegetation dynamics on exposed pond bottoms in the Ceskobudejovicka Basin (Czech Republic). Phytocoenologia 35:421–448

    Article  Google Scholar 

  • Šumberová K et al (2006) Variability of vegetation of exposed pond bottoms in relation to management and environmental factors. Preslia 78:235–252

    Google Scholar 

  • Šumberová K et al (2012) Life-history traits controlling the survival of Tillaea aquatica: a threatened wetland plant species in intensively managed fishpond landscapes of the Czech Republic. Hydrobiologia 689:91–110

    Article  Google Scholar 

  • Šusta J (1898) Fünf Jahrhunderte der Teichwirtschaft zu Wittingau. Herrcke & Lebeling, Stettin

    Google Scholar 

  • Sychra J et al (2010) Distribution and diversity of littoral macroinvertebrates within extensive reed beds of a lowland pond. Ann Limnol-Int J Limnol 46:281–289

    Article  Google Scholar 

  • Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236

    Article  Google Scholar 

  • Thompson K et al (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Zon JCJ (1977) Grass carp (Ctenopharyngodon idella Val.) in Europe. Aquat Bot 3:143–155

    Article  Google Scholar 

  • Waldon B (2012) The conservation of small water reservoirs in the Krajeńskie Lakeland (North-West Poland). LIMNOLOGICA 42:320–327

    Article  Google Scholar 

  • Watkins CE et al (1981) Food habits of fingerling grass carp. Progress Fish-Cult 43:95–97

    Article  Google Scholar 

  • Wezel A et al (2014) Biodiversity patterns of nutrient-rich fish ponds and implications for conservation. Limnology 15:213–223

    Article  Google Scholar 

  • Zákravský P, Hroudová Z (2007) The influence of controlled fishpond management on reed-bed restoration in the Velký a Malý Tisý National Nature Reserve. Zpr Čes Bot Společ 42, Mater 22:167–196

  • Zambrano L, Hinojosa D (1999) Direct and indirect effects of carp (Cyprinus carpio L.) on macrophyte and benthic communities in experimental shallow ponds in Central Mexico. Hydrobiologia 408:131–138

    Article  Google Scholar 

  • Zapletal T et al (2016) Consumption of plant material by perch (Perca fluviatilis). Folia Zool 65:95–97

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Vrba and J. Regenda for their helpful suggestions on an earlier version of the manuscript, fish farmers from companies across the Czech Republic, who shared their experience with us and gave us a lot of inspiration for our research, two anonymous reviewers for their valuable comments, and P. Franta for drawing Fig. 1.

Funding

Elaboration of this paper was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the projects CENAKVA (No. CZ.1.05/2.1.00/01.0024), CENAKVA II (No. LO1205 under the NPU I program) and FISHPOND2014 (No. LD14045 under the COST CZ program); the Grant Agency of the University of South Bohemia in České Budějovice (No. 060/2016/Z), the Czech Science Foundation (No. 17-09310S and 14-36079G – Centre of Excellence PLADIAS) and the Czech Academy of Sciences (RVO 67985939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Francová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Appendix 1 Examples of fish farming practice in carp ponds

Appendix 1 Examples of fish farming practice in carp ponds

Fig. 4
figure 4

Harvesting of a main carp pond in Bohemia (photo K. Šumberová)

Fig. 5
figure 5

Fish storage pond in early summer. Note the freshly mowed perennial vegetation on the dry bottom (photo K. Šumberová)

Fig. 6
figure 6

Nursery carp pond with rich floating-leaved, submerged and helophytic vegetation (photo K. Šumberová)

Fig. 7
figure 7

Partial summer drainage (during an extreme summer drought) of a main carp pond with a 2-year management cycle (photo K. Šumberová)

Fig. 8
figure 8

Mechanical elimination of submerged aquatic vegetation (photo K. Šumberová)

Fig. 9
figure 9

Bottom depressions (nests) left by spawning zander (photo K. Šumberová)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francová, K., Šumberová, K., Janauer, G.A. et al. Effects of fish farming on macrophytes in temperate carp ponds. Aquacult Int 27, 413–436 (2019). https://doi.org/10.1007/s10499-018-0331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-018-0331-6

Keywords

Navigation