Skip to main content
Log in

Crypthecodinium cohnii: a promising prey toward large-scale intensive rearing of the live feed copepod Acartia tonsa (Dana)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Autotrophic microalgae are in general used as prey for copepods in laboratory experiments and in aquaculture mass culturing. We tested the suitability of using the osmotrophic thecate dinoflagellate Crypthecodinium cohnii as an alternative prey for the live prey organism for fish larvae, the planktonic calanoid copepod Acartia tonsa. We found that A. tonsa fed and transformed ingested C. cohnii into new production well, although the gross growth efficiency was somewhat lower (~22%) than those reported in the literature when fed the autotrophic microalgae Rhodomonas salina (> 36%). We also compared the egg hatching success of eggs produced by the copepod when fed C. cohnii and R. salina and found a slightly lower hatching in eggs produced based on C. cohnii (60%) than on R. salina (89%)-fed copepods. The dinoflagellate C. cohnii is reared in the dark in bioreactors where it can obtain by far higher cell concentrations and biomasses per unit time and volume than the autotrophic prey R. salina reared in photobioreactors. Biochemical composition among the two prey showed that the carbon and nitrogen content was not very different; however, their fatty acid content deviated. The total fatty acids were ~ 17% of the cell carbon in R. salina whereas ~ 9% of the total cell carbon in C. cohnii. Moreover, ~ 18% of the fatty acids were EPA in R. salina, whereas EPA was mostly absent in C. cohnii. In contrast, ~ 63% of the fatty acids were DHA in C. cohnii compared to 12% DHA in R. salina. The trade-off of switching to the heterotrophic dinoflagellate diet is that the copepod performance is about 40% lower. Still, we propose that eliminating light in the rearing of copepod feed makes C. cohnii an interesting alternative and an economical feasible feed worth pursuing in large-scale rearing of copepods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abate TG, Nielsen R, Nielsen M, Jepsen PM, Hansen BW (2015) A cost-effectiveness analysis of live feeds in juvenile turbot Scopthalmus maximus (Linnaeus, 1758) farming: copepods versus Artemia. Aquac Nutr 22(4):899–910

    Article  Google Scholar 

  • Ahlgren G, Van Nieuwerburgh L, Wanstrand I, Pedersen M, Boberg M, Snoeijs P (2005) Imbalance of fatty acids in the base of the Baltic Sea food web—a mesocosm study. Can J Fish Aquat Sci 62(10):2240–2253

    Article  CAS  Google Scholar 

  • Ahlgren GL, Vrede T, Goedkoop W (2009) Fatty acid ratios in freshwater fish, zooplankton and zoobenthos – are there specific optima? Lipids in aquatic ecosystems. Springer, New York, pp 147–178

    Google Scholar 

  • Arndt C, Sommer U (2014) Effect of algal species and concentration on development and fatty acid composition of two harpacticoid copepods, Tisbe sp and Tachidius discipes, and a discussion about their suitability for marine fish larvae. Aquac Nutr 20(1):44–59

    Article  CAS  Google Scholar 

  • Barroso MV, de Carvalho CV, Antoniassi R, Cerqueira V (2013) Use of the copepod Acartia tonsa as the first live food for larvae of the fat snook Centropomus parallelus. Aquaculture 388:153–158

    Article  Google Scholar 

  • Berggreen U, Hansen BW, Kiørboe T (1988) Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implication for determination of copepod production. Mar Biol 99:341–352

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Camus T, Zeng C (2010) Roles of microalgae on total egg production over female lifespan and egg incubation time, naupliar and copepodite survival, sex ratio and female life expectancy of the copepod Bestiolina similis. Aquac Res 41(11):1717–1726

    Article  Google Scholar 

  • Camus T, Zeng C, McKinnon A (2009) Egg production, egg hatching success and population increase of the tropical paracalanid copepod, Bestiolina similis (Calanoida: Paracalanidae) fed different microalgal diets. Aquaculture 297(1–4):169–175

    Article  Google Scholar 

  • Chaloub RM, Motta NMS, de Araujo SP, de Aguiar PF, da Silva AF (2015) Combined effects of irradiance, temperature and nitrate concentration on phycoerythrin content in the microalga Rhodomonas sp. (Cryptophyceae). Algal Res 8:89–94

    Article  Google Scholar 

  • de Swaaf ME, Pronk JT, Sijtsma L (2003) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61(1):40–43

    Article  PubMed  Google Scholar 

  • Drillet G, Frouel S, Sichlau MH, Jepsen PM, Hojgaard JK, Joarder AK, Hansen BW (2011) Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture 315(3–4):155–166

    Article  Google Scholar 

  • Drillet G, Jepsen PM, Hojgaard JK, Jørgensen NOG, Hansen BW (2008) Strain-specific vital rates in four Acartia tonsa cultures II: life history traits and biochemical contents of eggs and adults. Aquaculture 279(1–4):47–54

    Article  CAS  Google Scholar 

  • Drillet G, Jørgensen NOG, Sørensen TF, Ramløv H, Hansen BW (2006) Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquac Res 37(8):756–772

    Article  CAS  Google Scholar 

  • Eriksen NT, Poulsen BR, Iversen JJL (1998) Dual sparging laboratory-scale photobioreactor for continuous production of microalgae. J Appl Phycol 10(4):377–382

    Article  Google Scholar 

  • Fenchel T (2001) How dinoflagellates swim. Protist 152:329–338

    Article  CAS  PubMed  Google Scholar 

  • Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17(6):805–815

    Article  Google Scholar 

  • Grima EM, Perez JAS, Camacho FG, Sanchez JLG, Alonso DL (1993) N-3 PUFA productivity in chemostat cultures of microalgae. Appl Microbiol Biotechnol 38(5):599–605

    Google Scholar 

  • Guevara M, Arredondo-Vega BO, Palacios Y, Saez K, Gomez PI (2016) Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients. J Appl Phycol 28(5):2651–2660

    Article  CAS  Google Scholar 

  • Guillard RRL (1960) A mutant of Chlamydomonas moewusii lacking contractile vacuoles. J Protozool 7(3):262–268

    Article  Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Strichochrysis immibilis is a diatom, not a chrysophyte. Phycologia 32(3):234–236

    Article  Google Scholar 

  • Gusmao LFM, McKinnon A (2009) The effect of food type and quantity on egg production and nucleic acid content of Acartia sinjiensis. Aquaculture 296(1–2):71–80

    Article  Google Scholar 

  • Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implication for species succession. Aquat Microb Ecol 28:279–288

    Article  Google Scholar 

  • Holling CS (1966) The functional response of invertebrate predators to prey density. Mem Entomol Soc Can 98(S48):5–86

    Article  Google Scholar 

  • Huang YC, Cheng SH, Chen HC, Lin CL, Chen TI (2011) The influence of temperature, salinity and food algae on Acartia bilobata population growth. J Taiwan Fish Res 19(2):29–36

    Google Scholar 

  • Ianora A, Poulet SA, Miralto A (2003) The effects of diatoms on copepod reproduction: a review. Phycologia 42(4):351–363

    Article  Google Scholar 

  • Izquierdo MS, Socorro J, Arantzamendi L, Hernandez-Cruz CM (2000) Recent advances in lipid nutrition in fish larvae. Fish Physiol Biochem 22(2):97–107

    Article  CAS  Google Scholar 

  • Jiang Y, Chen F (2000) Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochem 35(10):1205–1209

    Article  CAS  Google Scholar 

  • Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34(6–7):633–637

    Article  CAS  Google Scholar 

  • Kattner G, Hagen W, Lee RF, Campbell R, Deibel D, Falk-Petersen S, Graeve M, Hansen BW, Hirche HJ, Jonasdottir SH, Madsen ML, Mayzaud P, Muller-Navarra D, Nichols PD, Paffenhöfer GA, Pond D, Saito H, Stubing D, Virtue P (2007) Perspectives on marine zooplankton lipids. Can J Fish Aquat Sci 64(11):1628–1639

    Article  CAS  Google Scholar 

  • Kiørboe T, Møhlenberg F, Hamburger K (1985) Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar Ecol Prog Ser 26:85–97

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Visser AW (1999) Hydrodynamic signal perception in the copepod Acartia tonsa. Mar Ecol Prog Ser 179:97–111

    Article  Google Scholar 

  • Klein Breteler WCM, Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar Biol 135:191–198

    Article  Google Scholar 

  • Martinez-Cordova LR, Campana-Torres A, Martinez-Porchas M, Lopez-Elias JA, Garcia-Sifuentes CO (2012) Effect of alternative mediums on production and proximate composition of the microalgae Chaetoceros muelleri as food in culture of the copepod Acartia sp. Lat Am J Aquat Res 40(1):169–176

    Article  Google Scholar 

  • Matias-Peralta HM, Yusoff FM, Shariff M, Mohamed S (2011) Small-scale continuous production of a tropical marine copepod, Nitocra affinis californica Lang and its potential as live food for aquaculture. Afr J Agric Res 6(6):1611–1620

    Google Scholar 

  • McKinnon AD, Duggan S, Nichols PD, Rimmer MA, Semmens GL, Robino B (2003) The potential of tropical paracalanid copepods as live feeds in aquaculture. Aquaculture 223(1–2):89–106

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45(3):569–579

    Article  CAS  Google Scholar 

  • Molina E, Fernández L, Acién FG, Chisti Y (2001) Tubular photobiorectors design for algae cultures. J Biotechnol 92(2):113–131

    Article  CAS  PubMed  Google Scholar 

  • Ohs CL, Chang KL, Grabe SW, DiMaggio MA, Stenn E (2010) Evaluation of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 307(3–4):225–232

    Article  Google Scholar 

  • Pan YJ, Souissi S, Souissi A, Wu CH, Cheng SH, Hwang JS (2014) Dietary effects on egg production, egg-hatching rate and female life span of the tropical calanoid copepod Acartia bilobata. Aquac Res 45(10):1659–1671

    Article  Google Scholar 

  • Pleissner D, Eriksen NT (2012) Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnol Bioeng 109(8):2005–2016

    Article  CAS  PubMed  Google Scholar 

  • Real LA (1977) The kenetics of functional response. Am Nat 111(978):289–300

    Article  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1–4):195–214

    Article  CAS  Google Scholar 

  • Røjbek MC, Støttrup JG, Jacobsen C, Tomkiewicz J, Nielsen A, Trippel EA (2014) Effects of dietary fatty acids on the production and quality of eggs and larvae of Atlantic cod (Gadus morhua L.) Aquac Nutr 20(6):654–666

    Article  Google Scholar 

  • Shields RJ, Bell JG, Luizi FS, Gara B, Bromage NR, Sargent JR (1999) Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. J Nutr 129(6):1186–1194

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1998) Biometry: the principles of and practice of statistics in biological research, 3rd edn. W.H. Freeman, New York

  • Sommer, U., Adrian, R., Domis, L.D., Elser, J.J., Gaedke, U., Ibelings, B., Jeppesen, E., Lurling, M., Molinero, J.C., Mooij, W.M., Van Donk, E., Winder, M., 2012. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annual Reviews, Palo Alto

  • Støttrup JG, Bell JG, Sargent JR (1999) The fate of lipids during development and cold-storage of eggs in the laboratory-reared calanoid copepod, Acartia tonsa Dana, and in response to different algal diets. Aquaculture 176(3–4):257–269

    Article  Google Scholar 

  • Støttrup JG, Jensen J (1990) Influence of algal diet on feeding and egg production of the calanoid copepod Acartia tonsa Dana. J Exp Mar Biol Ecol 141(2–3):87–105

    Article  Google Scholar 

  • Støttrup JG, Richardson K, Kirkegaard E, Pihl NJ (1986) The cultivation of Acartia tonsa DANA for use as a live food source for marine fish larvae. Aquaculture 52:87–96

    Article  Google Scholar 

  • Tang KW, Jakobsen HH, Visser AW (2001) Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth, and trophic interactions among grazers. Limnol Oceanogr 46(8):1860–1870

    Article  Google Scholar 

  • Tuttle RC, Loeblich AR (1975) An optimal growth medium for the dinoflagellate Crypthecodinium cohnii. Phycologia 14(1):1–8

    Article  Google Scholar 

  • Tzovenis I, Fountoulaki E, Dolapsakis N, Kotzamanis I, Nengas I, Bitis I, Cladas Y, Economou-Amilli A (2009) Screening for marine nanoplanktic microalgae from Greek coastal lagoons (Ionian Sea) for use in mariculture. J Appl Phycol 21(4):457–469

    Article  CAS  Google Scholar 

  • Vu MTT, Douette C, Rayner TA, Thoisen CV, Nielsen SL, Hansen BW (2016) Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. J Appl Phycol 28:1485–1500

  • Wacker A, Martin-Creuzburg D (2012) Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: co-limitation by sterols and amino acids. Funct Ecol 26(5):1135–1143

    Article  Google Scholar 

  • Zhang J, Wu C, Pellegrini D, Romano G, Esposito F, Ianora A, Buttino I (2013) Effects of different monoalgal diets on egg production, hatching success and apoptosis induction in a Mediterranean population of the calanoid copepod Acartia tonsa (Dana). Aquaculture 400:65–72

    Article  Google Scholar 

Download references

Funding information

The present work was supported by the Danish Strategic Research Council grant (10-093522) IMPAQ to BWH and HHJ and the Danish National Advanced Technology Foundation grant (67-2013-1) COMA to BWH and CT. In addition, HHJ received funding from the VELUX Foundation (Grant No. VKR022608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Jakobsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakobsen, H.H., Thoisen, C. & Hansen, B. Crypthecodinium cohnii: a promising prey toward large-scale intensive rearing of the live feed copepod Acartia tonsa (Dana). Aquacult Int 26, 237–251 (2018). https://doi.org/10.1007/s10499-017-0207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-017-0207-1

Keywords

Navigation