Skip to main content
Log in

Dietary lipid concentrations influence growth, liver oxidative stress, and serum metabolites of juvenile hybrid snakehead (Channa argus × Channa maculata)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The study was conducted to evaluate the effect of dietary lipid levels on growth, liver oxidative stress, and serum metabolites of juvenile hybrid snakehead (Channa argus × Channa maculata). Five isonitrogenous (crude protein 420 g kg−1) practical diets containing 58, 87, 115, 144, and 173 g kg−1 crude lipid (named L58, L87, L115, L144, and L173, respectively) were fed to triplicate groups of 30 fish (mean initial weight 24 g) for 8 weeks. The results showed that the final body weight (58.68–78.81 g), specific growth rate (1.41–1.75 % day−1), and protein efficiency ratio (1.66–2.64) increased significantly with the increasing dietary lipid levels. Liver lipid contents (71.65–101.80 g kg−1) and crude lipid (52.10–83.63 g kg−1) of whole body increased with increasing dietary lipid levels and reached the highest values in fish of L173. Fish of L173 showed lower alkaline phosphatase (23.81 King Unit gprot−1) and catalase activities (4.44 U mgprot−1) but higher malondialdehyde content (0.69 nmol mgprot−1) in liver than the other groups. Higher alanine transaminase activity (8.20 U L−1), aspartate transaminase activity (63.65 U L−1), and triglyceride (0.29 mmol L−1) in serum were observed in fish of L173 compared to the other treatments. Fish of L144 showed higher superoxide dismutase activity and glutathione peroxidase activities in liver than that of fish fed diet L58. Fish fed diet L58 showed lower total cholesterol (3.61 mmol L−1), high-density lipoprotein cholesterol (1.39 mmol L−1), and low-density lipoprotein cholesterol (0.46 mmol L−1) in serum. These results suggested that juvenile snakehead (Channa argus × Channa maculata) achieved good growth performance with dietary lipid level 173 g kg−1. Diet with 143 g kg−1 lipid was more conductive to liver health. The appropriate dietary lipid supplementation needs to be determined in further studies .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad MH (2008) Response of African catfish, Clarias gariepinus, to different dietary protein and lipid levels in practical diets. J World Aquac Soc 39(4):541–548

    Article  Google Scholar 

  • Aliyu-Paiko M, Hashim R, Chong ASC, Yogarajah L, El-Sayed AFM (2010) Influence of different sources and levels of dietary protein and lipid on the growth, feed efficiency, muscle composition and fatty acid profile of snakehead Channa striatus (Bloch, 1793) fingerling. Aquac Res 41:1365–1376

    Article  CAS  Google Scholar 

  • Antonopoulou E, Kousidou E, Tserga E, Feidantsis K, Chatzifotis S (2014) Dietary lipid levels in meagre (Argyrosomus regius): effects on biochemical and molecular indicators of liver. Aquaculture 428–429:265–271

    Article  Google Scholar 

  • AOAC (2005) Official methods of analysis, 18th edn. Association of Official Analytical Chemists International, Gaithersburg

    Google Scholar 

  • Beers RF, Sizer IW (1952) Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Bessey OA, Lowry OH, Brock MJ (1946) A method for the rapid determination of alkaline phosphates with five cubic millimeters of serum. J Biol Chem 164:321–329

    CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bonvini E, Parma L, Mandrioli L, Sirri R, Brachelente C, Mongile F, Gatta PP, Bonaldo A (2015) Feeding common sole (Solea solea) juveniles with increasing dietary lipid levels affects growth, feed utilization and gut health. Aquaculture 449:87–93

    Article  CAS  Google Scholar 

  • Boone L, Meyer D, Cusick P, Ennulat D, Bolliger AP, Everds N, Meador V, Elliott G, Honor D, Bounous D, Jordan H (2005) Selection and interpretation of clinical pathology indicators of hepatic injury in preclinical studies. Vet Clin Pathol 34:182–188

    Article  CAS  PubMed  Google Scholar 

  • Boonyaratpalin M (1981) Lipid requirements of snakehead fingerling. Progress report of the regional project RAS/76/003, Network of Aquaculture Centres in Asia, Bangkok, Thailand, p 30

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brain RT, Kay HD (1927) Kidney phosphatase. II: the enzyme in disease. Biochem J 21:1104–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatzifotis S, Panagiotidou M, Papaioannou N, Pavlidis M, Nengas I, Mylonas CC (2010) Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture 307:65–70

    Article  CAS  Google Scholar 

  • Cowey CB (1993) Some effects of nutrition on flesh quality of cultured fish. In: Kaushik SJ, Luquet P (eds) Fish nutrition in practice, proceedings of the IV international symposium fish nutrition and feeding, vol 61. Les Colloques INRA, Paris, pp 227–236

    Google Scholar 

  • Ebrahimkhani MR, Neiman JAS, Raredon MSB, Hughes DJ, Griffith LG (2014) Bioreactor technologies to support liver function in vitro. Adv Drug Deliver Rev 69:132–157

    Article  Google Scholar 

  • El-Aal HAHMA (2012) Lipid peroxidation end-products as a key of oxidative stress: effect of antioxidant on their production and transfer of free radicals. In: Catala A (ed) Lipid peroxidation. INTECH Open Access Publisher, Vienna, pp 64–88

    Google Scholar 

  • Fisheries Bureau of Ministry of Agriculture (2014) China fishery statistical yearbook. China Agriculture Press, Beijing

    Google Scholar 

  • Flood LP, Carvan MJ III, Jaeger L, Busbee DL, Gatlin DM III, Neill WH (1996) Reduction in hepatic microsomal P-450 and related catalytic activity in farm-raised red drum. J Aquat Anim Health 8:13–21

    Article  Google Scholar 

  • Ghaedi A, Kabir MA, Hashim R (2016) Effect of lipid levels on the reproductive performance of Snakehead murrel, Channa striatus. Aquac Res 47:983–991

    Article  CAS  Google Scholar 

  • Ghanawi J, Roy L, Davis DA, Saoud IP (2011) Effects of dietary lipid levels on growth performance of marbled spinefoot rabbitfish Siganus rivulatus. Aquaculture 310:395–400

    Article  CAS  Google Scholar 

  • Halliwell B (2015) Free radicals and other reactive species in disease. eLS, 1–9

  • Han T, Li X, Wang JT, Hu SX, Jiang YD, Zhong XD (2014) Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica. Aquaculture 434:145–150

    Article  CAS  Google Scholar 

  • Hevrøy EM, Sandnes K, Hemre GI (2004) Growth, feed utilization, appetite and health in Atlantic salmon (Salmo salar L.) fed a new type of high lipid fish meal, Sea Grain, processed from various pelagic marine fish species. Aquaculture 235:371–392

    Article  Google Scholar 

  • Jeon CY, Roberts CK, Crespi CM, Zhang ZF (2013) Elevated liver enzymes in individuals with undiagnosed diabetes in the US. J Diabetes Complicat 27:333–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Tian LX, Zheng SL, Xie SW, Yang HJ, Liang GY, Liu YJ (2013) Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 34:1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MM, Righetti A (1970) Induction of rat liver alkaline phosphatase: the mechanism of the serum elevation in bile duct obstruction. J Clin Investig 49:508–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi K, Furuta T, Iwata N, Onuki K, Noguchi T (2009) Effect of dietary lipid levels on the growth, feed utilization, body composition and blood characteristics of tiger puffer Takifugu rubripes. Aquaculture 298:111–117

    Article  CAS  Google Scholar 

  • Kim KD, Lim SG, Kang YJ, Kim KW, Son MH (2012) Effects of dietary protein and lipid levels on growth ad body composition of juvenile far eastern catfish Silurus asotus. Asian Australas J Anim 25(3):369–374

    Article  CAS  Google Scholar 

  • Li XF, Liu WB, Lu KL, Xu WN, Wang Y (2012) Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol 33(2):316–323

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Mao YQ, Cai FS (1990) Nutritional lipid liver disease of grass carp (Ctenopharyngodon idella). Chin J Oceanol Limnol 8:363–373

    Article  Google Scholar 

  • López LM, Durazo E, Viana MT, Drawbridge M, Bureau DP (2009) Effect of dietary lipid levels on performance, body composition and fatty acid profile of juvenile white seabass, Atractoscion nobilis. Aquaculture 289:101–105

    Article  Google Scholar 

  • Martino RC, Cyrino JP, Portz L, Trugo LC (2002) Effect of dietary lipid level on nutritional performance of the surubim, Pseudoplatystoma coruscans. Aquaculture 209:209–218

    Article  CAS  Google Scholar 

  • Mourente G, Diaz-Salvago E, Bell JG, Tocher DR (2002) Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E. Aquaculture 214:343–361

    Article  CAS  Google Scholar 

  • NRC (2011) Nutrient requirements of fish and shrimp. National Academies Press, Washington

    Google Scholar 

  • Page JW, Andrews JW (1973) Interactions of dietary levels of protein and energy on channel catfish. J Nutr 103:1339–1346

    CAS  PubMed  Google Scholar 

  • Panchenko LF, Brusov OS, Gerasimov AM, Loktaeva TD (1975) Intramitochondrial localization and release of rat liver superoxide dismutase. FEBS Lett 55:84–87

    Article  CAS  PubMed  Google Scholar 

  • Pei Z, Xie S, Lei W, Zhu X, Yang Y (2004) Comparative study on the effect of dietary lipid level on growth and feed utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Günther). Aquac Nutr 10:209–216

    Article  CAS  Google Scholar 

  • Rueda-Jasso R, Conceicao LEC, Dias J, De Coen W, Gomes E, Rees JF, Soares F, Dinis MT, Sorgeloos P (2004) Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles. Aquaculture 231:417–433

    Article  CAS  Google Scholar 

  • Samantaray K, Mohanty SS (1997) Interactions of dietary levels of protein and energy on fingerling snakehead, Channa striata. Aquaculture 156:241–249

    Article  Google Scholar 

  • Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, pp 181–257

    Google Scholar 

  • Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193–199

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Mu ZB, Xu LM, Xu GF, Liu M, Shan AS (2009) Dietary lipid level induced antioxidant response in Manchurian trout, Brachymystax lenok (Pallas) larvae. Lipids 44:643–654

    Article  CAS  PubMed  Google Scholar 

  • Zhu XH, Wang GQ (2011) Effect of dietary energy and protein levels on growth, feed utilization and body composition of snakehead Channa argus. Feed Ind 32(2):15–18

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Zhang X. X. and He J. for taking care of the snakehead. Special thanks to Xu T. and Chen W. Y. for helping with the chemical analysis. This research was supported by funds from Chongqing Ecological Fishery Technology System 2015-91, China and Tongwei Co., Ltd., China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Mei Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, PF., Li, FJ., Chen, XR. et al. Dietary lipid concentrations influence growth, liver oxidative stress, and serum metabolites of juvenile hybrid snakehead (Channa argus × Channa maculata). Aquacult Int 24, 1353–1364 (2016). https://doi.org/10.1007/s10499-016-9993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-9993-0

Keywords

Navigation