Skip to main content

Advertisement

Log in

Modelling the biomass yield and the impact of seabream mariculture in the Adriatic and Tyrrhenian Seas (Italy)

  • Original Paper
  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

An individual-based model for Sparus aurata was developed, taking into account the effects on the growth rate of water temperature, food availability and diet composition. The model was identified on the basis of the recent literature regarding the physiological ecology of this species. It was subsequently calibrated and validated by using original field data collected at two Italian fish farms located, respectively, in the Adriatic and Tyrrhenian Seas. The mass budget of uneaten food and faeces was computed using the model at each farm: the optimal ingestion rate of a fish was computed based on its wet weight and the temperature of the water, while the faeces estimation considered the different digestibility of lipids, carbohydrates and proteins in the diet. From an applied perspective, the future use of this growth model in relation to mariculture site selection and monitoring might typically be to estimate both the yield and the amount of uneaten food and faeces discharged from a fish cage. This second output represents a useful input for deposition models which are routinely used in the field of mariculture monitoring by different EU countries. The integration of growth and deposition models in a single system could provide a useful tool for the site-selection and monitoring of finfish mariculture operations in Mediterranean environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Brafield AE, Solomon DJ (1972) Oxycaloric coefficients for animals respiring nitrogenous substrates. Comp Biochem Physiol Physiol 43:837–841. doi:10.1016/0300-9629(72)90155-7

    Article  CAS  Google Scholar 

  • Brett JR, Groves TDD (1979) Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 8. Academic Press, New York, pp 279–353

    Google Scholar 

  • Cacho OJ (1990) Protein and fat dynamics in fish. A bioenergetic model applied to aquaculture. Ecol Modell 50:33–56. doi:10.1016/0304-3800(90)90041-E

    Article  Google Scholar 

  • Cromey CJ, Nickell TD, Black KD (2002) DEPOMOD—modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture 214:211–239. doi:10.1016/S0044-8486(02)00368-X

    Article  Google Scholar 

  • Ervik A, Hansen PK, Aure J, Stigebrandt A, Johannessen P, Jahnsen T (1997) Regulating the local environmental impact of intensive marine fish farming I. The concept of the MOM system (Modelling–Ongrowing fish farms–Monitoring). Aquaculture 158:85–94. doi:10.1016/S0044-8486(97)00186-5

    Article  Google Scholar 

  • FAO (2007) Fishstat+ v2.3, Aquaculture production: quantities 1950–2005. http://www.fao.org/fishery/topic/16073. Cited 20 March 2008

  • Guinea J, Fernandez F (1997) Effect of feeding frequency, feeding level and temperature on energy metabolism in Sparus aurata. Aquaculture 148:125–142. doi:10.1016/S0044-8486(96)01424-X

    Article  Google Scholar 

  • Hansen PK, Ervik A, Schaanning M, Johannessen P, Aure J, Jahnsen T, Stigebrandt A (2001) Regulating the local environmental impact of intensive, marine fish farming II. The monitoring programme of the MOM system (Modelling–Ongrowing fish farms–Monitoring). Aquaculture 194:75–92. doi:10.1016/S0044-8486(00)00520-2

    Article  Google Scholar 

  • Hernández JM, Gasca-Leyva E, Leónc CJ, Vergara JM (2003) A growth model for gilthead seabream (Sparus aurata). Ecol Modell 165:265–283. doi:10.1016/S0304-3800(03)00095-4

    Article  Google Scholar 

  • Jorgensen SE (1976) A model of fish growth. Ecol Modell 2:303–313. doi:10.1016/0304-3800(76)90013-2

    Article  Google Scholar 

  • Jusup M, Gecek S, Legovic T (2007) Impact of aquacultures on the marine ecosystem: modelling benthic carbon loading over variable depth. Ecol Modell 200:459–466. doi:10.1016/j.ecolmodel.2006.08.007

    Article  Google Scholar 

  • Lupatsch I, Kissil GW, Sklan D, Pfeffer E (1997) Apparent digestibility coefficients of feed ingredients and their predictability in compound diets for gilthead seabream, Sparus aurata L. Aquac Nutr 3:81–89. doi:10.1046/j.1365-2095.1997.00076.x

    Article  Google Scholar 

  • Lupatsch I, Kissil GW, Sklan D (2003) Defining energy and protein requirements of gilthead seabream (Sparus aurata) to optimize feeds and feeding regimes. Isr J Aquac Bamidgeh 55:243–257

    Google Scholar 

  • Meramed (2008) MERAMED development of monitoring guidelines and modelling tools for environmental effects from Mediterranean aquaculture, FP5 EU funded project. http://meramed.akvaplan.com. Cited 20 March

  • Porrello S, Tomassetti P, Manzueto L, Finoia MG, Persia E, Mercatali I, Stipa P (2005) The influence of marine cages on the sediment chemistry in the western Mediterranean Sea. Aquaculture 249:145–158. doi:10.1016/j.aquaculture.2005.02.042

    Article  CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1987) Numerical recipes, the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Ravagnan G (1984) L’élevage du loup et de la daurade en valliculture. In: Barnab G, Billard R (eds) L’Aquaculture Du Bar Et Des Sparidés. INRA, Paris, pp 435–446

    Google Scholar 

  • Ravagnan G (1995) Manuale di acquacoltura costiera. Consorzio per l’ecologia e l’acquacoltura costiera (in Italian)

  • Requena A, Fernandez-Borras J, Planas J (1997) The effects of temperature rise on oxygen consumption and energy budget in gilthead sea bream. Aquacult Int 5:415–426. doi:10.1023/A:1018332727888

    Article  Google Scholar 

  • Robaina L, Izquierdo MS, Moyano FJ, Socorro J, Vergara JM, Montero D, Fernandez-Palacios H (1995) Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture 130:219–233. doi:10.1016/0044-8486(94)00225-D

    Article  Google Scholar 

  • Santinha PJM, Medale F, Corraze G, Gomes EFS (1999) Effects of the dietary protein: lipid ratio on growth and nutrient utilization in gilthead seabream (Sparus aurata L.). Aquac Nutr 5:147–156. doi:10.1046/j.1365-2095.1999.00107.x

    Article  CAS  Google Scholar 

  • Solidoro C, Pastres R, Melaku Canu C, Pellizzato M, Rossi R (2000) Modelling the growth of Tapes philippinarum in northern Adriatic lagoons. Mar Ecol Prog Ser 199:137–148. doi:10.3354/meps199137

    Article  Google Scholar 

  • Stigebrandt A (1999) Turnover of energy and matter by fish—a general model with application to salmon. Fisken and Havet No. 5. Institute of Marine Research, Norway

    Google Scholar 

  • Stigebrandt A, Aure J, Ervik A, Hansen PK (2004) Regulating the local environmental impact of intensive marine fish farming III. A model for estimation of the holding capacity in the Modelling–Ongrowing Fish Farm–Monitoring System. Aquaculture 234:239–261. doi:10.1016/j.aquaculture.2003.11.029

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by EU project no. 006540 (ECASA, http://www.ecasa.org.uk). The authors would like to thank Dr. Simone Libralato at OGS Trieste for the help given in the early stages of the model development. The authors would also like to thank the personnel at “Il Vigneto” farm in Porto Ercole and the “Co. Pro. Mar.” farm in Bisceglie for actively collaborating in carrying out the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Brigolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigolin, D., Pastres, R., Tomassetti, P. et al. Modelling the biomass yield and the impact of seabream mariculture in the Adriatic and Tyrrhenian Seas (Italy). Aquacult Int 18, 149–163 (2010). https://doi.org/10.1007/s10499-008-9232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-008-9232-4

Keywords

Navigation