Skip to main content
Log in

Radium Isotopes as a Tracer of Water Sources and Mixing in the Vidourle Stream (South of France)

  • Original Article
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

This study reports analyses of Ra isotopes in a Mediterranean stream, the Vidourle river, whose upper course drains the granitic and metamorphic basement of the SE part of the French Massif Central (Cévennes) and then flows through the karstified carbonates of Jurassic and Cretaceous ages. In these low-Ra waters (226Ra activities range from 1.5 to 4.9 mBq/L), all four Ra isotopes were successfully analyzed through gamma spectrometry during a single analysis. 226Ra activities and (228Ra/226Ra) ratios are distinctly higher in waters draining the Variscan basement than in waters affected by dissolution of Mesozoic carbonates, in agreement with U contents and Th/U ratios of both rock types. This results in a general N-S decrease, which parallels the evolution of the 87Sr/86Sr ratios. (228Ra/226Ra) ratios reported vs 1/(226Ra) display linear relationships suggesting mixing of several water components related to the lithology. Ra might thus have a more conservative behavior than usually assumed, possibly because of the high water/rock ratio and flow rate in karst environment. Short-lived Ra isotopes (224Ra and 223Ra) are often in excess compared to their equilibrium values, due to their supply through alpha-recoil processes. 223Ra activities in a Vidourle tributary can be explained by mixing of two water components, with a negligible radioactive decay of 223Ra during underground water flow. The calculated minimum flow rates (40–60 m/h) are in agreement with those deduced from artificial tracer experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JAS, Osmond JK, Rogers JJW (1959) The geochemistry of thorium and uranium. Phys Chem Earth 3:298–348. https://doi.org/10.1016/0079-1946(59)90008-4

    Article  Google Scholar 

  • Baskaran M, Murphy DJ, Santschi PH, Orr JC, Schink DR (1993) A method for rapid in situ extraction and laboratory determination of Th, Pb, and Ra isotopes from large volumes of seawater. Deep Sea Res I 40(4):849–865

    Article  Google Scholar 

  • Baskaran M, Novell T, Nash K, Ruberg SA, Johengen T, Hawley N, Klump JV, Biddanda BA (2016) Tracing the seepage of subsurface sinkhole vent waters into lake Huron using radium and stable isotopes of oxygen and hydrogen. Aquat Geochem 22:349–374

    Article  Google Scholar 

  • Batiot-Guilhe C, Ladouche B, Seidel JL, Maréchal J-C (2013) Caractérisation hydrochimique et qualité des eaux de l’aquifère karstique du Lez. Karstologia 62:23–32

    Google Scholar 

  • Bicalho CC, Batiot-Guilhe C, Taupin JD, Patris N, Van Exter S, Jourde H (2019) A conceptual model for groundwater circulation using isotopes and geochemical tracers coupled with hydrodynamics: a case study of the Lez karst system, France. Chem Geol. https://doi.org/10.1016/j.chemgeo.2017.08.014

    Article  Google Scholar 

  • Blum JD, Erel Y, Brown K (1993) 87Sr/86Sr ratios of Sierra Nevada stream waters: implications for relative mineral weathering rates. Geochim Cosmochim Acta 57:5019–5025

    Article  Google Scholar 

  • Chabaux F, Riotte J, Dequincey O (2003) U-Th-Ra fractionation during weathering and river transport. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Reviews in mineralogy and geochemistry: volume 52—Uranium-series geochemistry. The Mineralogical Society of America, Washington, pp 533–576

    Google Scholar 

  • Chen JH, Edwards RL, Wasserburg GJ (1986) 238U, 234U and 232Th in seawater. Earth Planet Sci Lett 80:241–251

    Article  Google Scholar 

  • Condomines M, Rihs S, Lloret E, Seidel JL (2010) Determination of the four natural Ra isotopes in thermal waters by gamma-ray spectrometry. Appl Radiat Isot 68:384–391. https://doi.org/10.1016/j.apradiso.2009.10.056

    Article  Google Scholar 

  • Drogue C (1969) Contribution à l’étude quantitative des systèmes hydrologiques karstiques d’après l’exemple de quelques karsts périméditerranéens. Thèse Doct. Sci. Nat., Université de Montpellier

  • Elliot T, Marcos D, Napier J (2014) Dissolved uranium, radium and radon evolution in the Continental Intercalaire aquifer, Algeria and Tunisia. J Environ Radioact 137:150–162. https://doi.org/10.1016/j.jenvrad.2014.07.003

    Article  Google Scholar 

  • Farrell JW, Clemens SC, Gromet LP (1995) Improved chronostratigraphic reference curve of late Neogene seawater 87Sr/86Sr. Geology 23:403–406

    Article  Google Scholar 

  • Gascoyne M (1992) Geochemistry of the actinides and their daughters. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. Oxford Science Publications, New York, pp 34–61

    Google Scholar 

  • Guerrero JL, Vallejos Á, Cerón JC, Sánchez-Martos F, Pulido-Bosch A, Bolívar JP (2016) U-isotopes and 226Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas. J Environ Radioact 158–159:9–20. https://doi.org/10.1016/j.jenvrad.2016.03.015

    Article  Google Scholar 

  • Jones CE, Jenkins HC, Coe AL, Hesselbo SP (1994) Strontium isotopic variations in jurassic and cretaceous seawater. Geochim Cosmochim Acta 58:3061–3074

    Article  Google Scholar 

  • Kraemer TF (2005) Radium isotopes in Cayuga Lake, New York: indicators of inflow and mixing processes. Limnol Oceanog 50(1):158–168

    Article  Google Scholar 

  • Kraemer TF, Genereux DP (1998) Applications of uranium- and thorium-series radionuclides in catchment hydrology studies. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, New York, pp 679–722

    Chapter  Google Scholar 

  • Krishnaswami S, Cochran JK (2008) U-Th series nuclides in aquatic systems, vol 13. Elsevier, Amsterdam

    Google Scholar 

  • Krishnaswami S, Graustein WC, Turekian KK, Dowd JF (1982) Radium, thorium and radioactive lead isotopes in groundwaters: application to the in situ determination of adsorption desorption rate constants and retardation factors. Water Resour Res 18:1663–1675. https://doi.org/10.1029/wr018i006p01663

    Article  Google Scholar 

  • Lamontagne S, Taylor AR, Herpich D, Hancock GJ (2015) Submarine groundwater discharge from the South Australian Limestone Coast region estimated using radium and salinity. J Environ Radioact 140:30–41. https://doi.org/10.1016/j.jenvrad.2014.10.013

    Article  Google Scholar 

  • Legeay PL (2013) Utilisation des isotopes du strontium pour caractériser les dynamiques de recharge et de transfert d’un aquifère karstique. unpublished M2 report, Université Pierre et Marie Curie, MinesParisTech & AgroParisTech

  • Luís AT, Durães N, da Silva EF, Ribeiro S, Silva AJF, Patinha C, Almeida SFP, Azevedo MR (2019) Tracking multiple Sr sources through variations in 87Sr/86Sr ratios of surface waters from the Aljustrel massive sulphide mining area: geological versus anthropogenic inputs. Appl Geochem 102:108–120. https://doi.org/10.1016/j.apgeochem.2019.01.016

    Article  Google Scholar 

  • Molina Porras A, Condomines M, Seidel JL (2017a) Determination of low-level radium isotope activities in fresh waters by gamma spectrometry. Appl Radiat Isot 120:119–125. https://doi.org/10.1016/j.apradiso.2016.12.010

    Article  Google Scholar 

  • Molina-Porras A, Condomines M, Seidel JL (2017b) Radium isotopes, radon and 210Pb in karstic waters: example of the Lez system (South of France). Chem Geol 466:327–340. https://doi.org/10.1016/j.chemgeo.2017.06.022

    Article  Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380(6575):612

    Article  Google Scholar 

  • Négrel P, Fouillac C, Brach M (1997) A strontium isotopic study of mineral and surface waters from the Cezallier (Massif Central, France): implications for mixing processes in areas of disseminated emergences of mineral waters. Chem Geol 135:89–101

    Article  Google Scholar 

  • Porcelli D (2008) Investigating groundwater processes using U- and Th-series nuclides. In: Krishnaswami S, Cochran JK (eds) U-Th series nuclides in aquatic systems. Elsevier, New York, pp 105–153. https://doi.org/10.1016/s1569-4860(07)00004-6

    Chapter  Google Scholar 

  • Porcelli D, Swarzenski PW (2003) The behavior of U- and Th-series nuclides in groundwater. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Reviews in mineralogy and geochemistry: volume 52—Uranium-series geochemistry. The Mineralogical Society of America, Washington, pp 317–361

    Google Scholar 

  • Porcelli D, Kim CK, Martin P, Moore WS, Phaneuf M (2014). Properties of radium. In: IAEA technical report series 476-the environmental behaviour of radium: revised edition pp 6–32

  • Rodellas V, Garcia-Orellana J, Trezzi G, Masqué P, Stieglitz TC, Bokuniewicz H, Cochran JK, Berdalet E (2017) Using the radium quartet to quantify submarine groundwater discharge and porewater exchange. Geochim Cosmochim Acta 196:58–73. https://doi.org/10.1016/j.gca.2016.09.016

    Article  Google Scholar 

  • SANDRE (2012). Cours d’eau: Le Vidourle [WWW Document]. Jeux de données de référence. http://www.sandre.eaufrance.fr/geo/CoursEau/Y34-0400. Accessed 6 March 17

  • Shand P, Darbyshire DPF, Love AJ, Edmunds WM (2009) Sr isotopes in natural waters: applications to source characterisation and water–rock interaction in contrasting landscapes. Appl Geochem 24:574–586. https://doi.org/10.1016/j.apgeochem.2008.12.011

    Article  Google Scholar 

  • Simler R (2014) Software diagrammes (V6.48). Laboratoire d’Hydrologie d’Avignon, Université d’Avignon et pays du Vaucluse, Avignon. http://www.lha.univ-avignon.fr/LHA-Logiciels.htm. Accessed 22 Nov 2014

  • Sturchio NC, Bohlke JK, Markun FJ (1993) Radium isotope geochemistry of thermal waters, Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta 56:1203–1214

    Article  Google Scholar 

  • Vaute L, Drogue C, Garrelly L, Ghelfenstein M (1997) Relations between the structure of storage and the transport of chemical compounds in karstic aquifers. J Hydrol 199:221–238. https://doi.org/10.1016/s0022-1694(96)03245-3

    Article  Google Scholar 

  • Vinson DS, Lundy JR, Dwyer GS, Vengosh A (2012) Implications of carbonate-like geochemical signatures in a sandstone aquifer: radium and strontium isotopes in the Cambrian Jordan aquifer (Minnesota, USA). Chem Geol 334:280–294. https://doi.org/10.1016/j.chemgeo.2012.10.030

    Article  Google Scholar 

  • Vinson DS, Lundy JR, Dwyer GS, Vengosh A (2018) Radium isotope response to aquifer storage and recovery in a sandstone aquifer. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2018.01.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institutional Program for Scholarships Abroad for University Officials of the Office of International Affairs and External Cooperation (OAICE) of the University of Costa Rica (Grant Number OAICE-02-CAB-045-2014) and the Institut français d’Amérique centrale (IFAC) of the Ministère français des Affaires Etrangères et du Développement International (MAE-DI, grant number 789478C). We thank Sandra Van Exter for her help with major element analyses. We are grateful to the MEDYCYSS-OSU OREME team for making available their database. We thank T. Przylibski and an anonymous reviewer who made thoughtful comments and suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Molina-Porras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Porras, A., Condomines, M., Legeay, PL. et al. Radium Isotopes as a Tracer of Water Sources and Mixing in the Vidourle Stream (South of France). Aquat Geochem 26, 119–136 (2020). https://doi.org/10.1007/s10498-020-09371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-020-09371-1

Keywords

Navigation