Skip to main content

Advertisement

Log in

Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

This study assesses the potential use of Mg isotopes to trace Mg carbonate precipitation in natural waters. Salda Lake (SW Turkey) was chosen for this study because it is one of the few modern environments where hydrous Mg carbonates are the dominant precipitating minerals. Stromatolites, consisting mainly of hydromagnesite, are abundant in this lake. The Mg isotope composition of incoming streams, groundwaters, lake waters, stromatolites, and hydromagnesite-rich sediments were measured. Because Salda Lake is located in a closed basin, mass balance requires that the Mg isotopic offset between Lake Salda water and precipitated hydromagnesite be comparable to the corresponding offset between Salda Lake and its water inputs. This is consistent with observations; a δ26Mg offset of 0.8–1.4 ‰ is observed between Salda Lake water and it is the incoming streams and groundwaters, and precipitated hydromagnesite has a δ26Mg 0.9–1.1 ‰ more negative than its corresponding fluid phase. This isotopic offset also matches closely that measured in the laboratory during both biotic and abiotic hydrous Mg carbonate precipitation by cyanobacteria (Mavromatis, V., Pearce, C., Shirokova, L. S., Bundeleva, I. A., Pokrovsky, O. S., Benezeth, P. and Oelkers, E.H.: Magnesium isotope fractionation during inorganic and cyanobacteria-induced hydrous magnesium carbonate precipitation, Geochim. Cosmochim. Acta, 2012a. 76, 161–174). Batch reactor experiments performed in the presence of Salda Lake cyanobacteria and stromatolites resulted in the precipitation of dypingite (Mg5(CO3)4(OH)2·5(H2O)) and hydromagnesite (Mg5(CO3)4(OH)2·4H2O) with morphological features similar to those of natural samples. Concurrent abiotic control experiments did not exhibit carbonate precipitation demonstrating the critical role of cyanobacteria in the precipitation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Black JR, Yin QZ, Casey WH (2006) An experimental study of magnesium-isotope fractionation in chlorophyll-a photosynthesis. Geochim Cosmochim Acta 70:4072–4079

    Article  Google Scholar 

  • Black JR, Yin QZ, Rustad JR, Casey WH (2007) Magnesium-isotope equilibrium in chlorophylls. J Am Chem Soc 129:8690–8691

    Article  Google Scholar 

  • Brady AL, Slater G, Laval B, Lim DS (2009) Constraining carbon sources and growth rates of freshwater stromatolites in Pavilion Lake using 14C analysis. Geobiology 7:544–555

    Article  Google Scholar 

  • Braissant O, Cailleau G, Dupraz C, Verrecchia AP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sediment Res 73:485–490

    Article  Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411

    Article  Google Scholar 

  • Braithwaite CJR, Zedef V (1994) Living hydromagnesite stromatolites from Turkey. Sediment Geol 92:1–5

    Article  Google Scholar 

  • Braithwaite CJR, Zedef V (1996) Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Gölü, Turkey. J Sediment Res 66:991–1002

    Google Scholar 

  • Buhl D, Immenhauser A, Smeulders G, Kabiri L, Richter DK (2007) Time series δ26Mg analysis in speleothem calcite: kinetic versus equilibrium fractionation, comparison with other proxies and implications for palaeoclimate research. Chem Geol 244:715–729

    Article  Google Scholar 

  • Calvin WM, King TVV, Clark RN (1994) Hydrous carbonates on Mars? Evidence from Mariner 6/7 infrared spectrometer and ground-based telescopic spectra. J Geophys Res 99:14659–14675

    Article  Google Scholar 

  • Castanier S, Bernet-Rollande MC, Maurin A, Perthuisot JP (1993) Effects of microbial activity on the hydrochemistry and sedimentology of Lake Logipi, Kenya. Hydrobiologia 267:99–112

    Article  Google Scholar 

  • Chang VTC, Williams RJP, Makishima A, Belshawl NS, O’Nions RK (2004) Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun 323:79–85

    Article  Google Scholar 

  • Cheng WT, Li ZB (2010a) Controlled supersaturation precipitation of hydromagnesite for the MgCl2–Na2CO3 system at elevated temperatures: chemical modeling and experiment. Ind Eng Chem Res 49:1964–1974

    Article  Google Scholar 

  • Cheng WT, Li ZB (2010b) Nucleation kinetics of nesquehonite (MgCO3 3H2O) in the MgCl2–Na2CO3 system. J Cryst Growth 312:1563–1571

    Article  Google Scholar 

  • Cox G, James JM, Leggett KEA, Armstrong R, Osborne L (1989) Cyanobacterially deposited speleothems: subaerial stromatolites. Geomicrobiol J 7:245–252

    Article  Google Scholar 

  • Dittrich M, Sibler S (2010) Calcium carbonate precipitation by cyanobacterial polysaccharides. In: Pedley HM, Rogerson M (eds) Tufas and Speleotherms: unravelling the microbial and physical controls, Geol Soc Lond Spec Publ 336:51–63

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    Article  Google Scholar 

  • Dove PM (2010) The rise of skeletal biominerals. Elements 6:37–42

    Article  Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  Google Scholar 

  • Edwards HGM, Moody CD, Newton EM, Villar SEJ, Russell MJ (2005) Raman spectroscopic analysis of cyanobacterial colonization of hydromagnesite, a putative martian extremophile. Icarus 175:372–381

    Article  Google Scholar 

  • Ferris FG, Thompson JB, Beveridge TJ (1997) Modern freshwater microbialites from Kelly Lake, british Columbia, Canada. Palaios 12:213–219

    Article  Google Scholar 

  • Foster GL, von Strandmann P, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst 11:10

    Article  Google Scholar 

  • Galy A, Belshaw NS, Halicz L, O’ Nions RK (2001) High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry Internat. J Mass Spec 208:89–98

    Article  Google Scholar 

  • Galy A, Bar-Mattews M, Halicz L, O’Nions RK (2002) Mg isotopic composition of carbonate: insight from speleotherm formation. Earth Planet Sci Lett 201:105–115

    Article  Google Scholar 

  • Girgin S, Kazanci N, Dügel M (2004) On the limnology of deep and saline lake Burdur in Turkey. Acta Hydrochim Hydrobiol 32:189–200

    Article  Google Scholar 

  • Goldstein SL, Deines P, Oelkers EH, Rudnik RL, Walter LM (2003) Standards for publication of isotopic ratio and chemical data in chemical geology. Chem Geol 202:1–4

    Article  Google Scholar 

  • Hartley AM, House WA, Callow ME, Leadbeater BSC (1995) The role of a green alga in the precipitation of calcite and the coprecipitation of phosphate in freshwater. Int Rev Hydrobiol Hydrogr 80:385–401

    Article  Google Scholar 

  • Hartley AM, House WA, Leadbeater BSC, Callow ME (1996) The use of microelectrodes to study the precipitation of calcite upon algal biofilms. J Colloid Interface Sci 183:498–505

    Article  Google Scholar 

  • Higgins JA, Schrag DP (2010) Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim Cosmochim Acta 74:5039–5053

    Article  Google Scholar 

  • Hippler D, Buhl D, Witbaard R, Richter DK, Immenhauser A (2009) Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates. Geochim Cosmochim Acta 73:6134–6146

    Article  Google Scholar 

  • Hopkinson L, Kristovab P, Ruttb K, Cressey G (2012) Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim Cosmochim Acta 76:1–13

    Article  Google Scholar 

  • Immenhauser A, Buhl D, Richter D, Niedermayr A, Riechelmann D, Dietzel M, Schulte U (2010) Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—field study and experiments. Geochim Cosmochim Acta 74:4346–4364

    Article  Google Scholar 

  • Jørgensen BB, Revsbech NP (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28:1075–1093

    Article  Google Scholar 

  • Kazanci N, Girgin S, Dügel M (2004) On the limnology of Salda Lake, a large and deep soda lake in southwestern Turkey: future management proposals, aquatic conservation. Mar Freshw Ecosyst 14:151–162

    Article  Google Scholar 

  • Kazmierczak J, Kempe S (2006) Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafo’ou Island, Tonga. Naturwissenschaften 93:119–126

    Article  Google Scholar 

  • Kelts K, Hsu J (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes—chemistry, geology, physics. Springer, New York, pp 295–323

    Google Scholar 

  • Kempe S, Kazmierczak J (1990) Chemistry and stromatolites of the sea-linked Satonda Crater Lake, Indonesia: a recent model for the Precambrian sea? Chem Geol 81:299–310

    Article  Google Scholar 

  • Knoll AH, Fairchild JJ, Sweet K (1993) Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proteroizic/Cambrian transition. Palaios 8:512–525

    Article  Google Scholar 

  • Kranz SA, Wolf-Gladrow D, Nehrke G, Langer G, Rost B (2010) Calcium carbonate precipitation induced by the growth of the marine Cyanobacterium. Trichodesmium. Limnol Oceanogr 55:2563–2569

    Article  Google Scholar 

  • Laval B, Cady SL, Pollack JC, McKay CP, Bird JS, Grotzinger JP, Ford DC, Bohm HR (2000) Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature 407:626–629

    Article  Google Scholar 

  • Li W, Beard BL, Johnson CM (2011) Exchange and fractionation of Mg isotopes between epsomite and saturated MgSO4 solution. Geochim Cosmochim Acta 75:1814–1828

    Article  Google Scholar 

  • Lowenstum HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Martinez R, Pokrovsky OS, Schott J, Oelkers EH (2008) Surface charge and zeta-potential of metabolically active and dead cyanobacteria. J. Colloid Interface Sci 323:317–325

    Article  Google Scholar 

  • Martinez RE, Gardes E, Pokrovsky OS, Schott J, Oelkers EH (2010) Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces? Geochim Cosmochim Acta 74:1329–1337

    Article  Google Scholar 

  • Mavromatis V, Shirokova LS, Bundeleva I, Pokrovsky OS, Bénézeth P, Oelkers EH, Gerard E (2011) Biomineralization of hydrous Mg carbonates in the Salda Lake, SE Turkey: new insights from stable Mg isotopes. EGU Vienna Geophys Res Abstr 13:1598

    Google Scholar 

  • Mavromatis V, Pearce C, Shirokova LS, Bundeleva IA, Pokrovsky OS, Benezeth P, Oelkers EH (2012a) Magnesium isotope fractionation during inorganic and cyanobacteria-induced hydrous magnesium carbonate precipitation. Geochim Cosmochim Acta 76:161–174

    Article  Google Scholar 

  • Mavromatis V, Schmidt M, Botz R, Comas-Bru L, Oelkers EH (2012b) Experimental quantification of the effect of Mg on calcite—aqueous fluid oxygen isotope fractionation. Chem Geol 310–311:97–105

    Article  Google Scholar 

  • Merz MUE (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26:81–102

    Article  Google Scholar 

  • Müller G, Irion G, Förstner U (1972) Formation and diagenesis of inorganic Ca-Mf carbonates in the lacustrine environment. Naturwissenschaften 59:158–164

    Article  Google Scholar 

  • Obst M, Dittrich M (2006) Calcium adsorption and changes of the surface microtopography of cyanobacteria studied by AFM, CFM, and TEM with respect to biogenic calcite nucleation. Geochem Geophys Geosyst 7:15

    Article  Google Scholar 

  • Obst M, Wehrli B, Dittrich M (2009) CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism. Geobiology 7:324–347

    Article  Google Scholar 

  • Oelkers EH, Schott J (2005) Geochemical aspects of CO2 sequestration. Chem Geol 217:183–186

    Article  Google Scholar 

  • Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4:333–338

    Article  Google Scholar 

  • Otsuki A, Wetzel RG (1974) Calcium and total alkalinity budgets and calcium carbonate precipitation in a small hard-water lake. Arch Hydrobiol 73:14–30

    Google Scholar 

  • Palomba E, Zinzi A, Cloutis EA, D’Amore M, Grassi D, Maturilli A (2009) Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature. Icarus 203:58–65

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch—Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Water-Resources Investigations Report 99-4259, p 310

  • Pedone VA, Folk RL (1996) Formation of aragonite cement by nannobacteria in the Great Salt Lake, Utah. Geology 24:763–765

    Article  Google Scholar 

  • Pentecost A (1978) Blue-green algae and freshwater carbonate deposits. Proc R Soc Lond B 200:43–61

    Article  Google Scholar 

  • Pentecost A, Spiro B (1990) Stable carbon and oxygen isotope composition of calcites associated with modern fresh-water cyanobacteria and algae. Geomicrobiol J 8:17–26

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Planavsky N, Reid RP, Lyons TW, Myshrall KL, Visscher PT (2009) Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7:566–576

    Article  Google Scholar 

  • Pokrovsky OS (1998) Precipitation of calcium and magnesium carbonates from homogeneous supersaturated solutions. J Cryst Growth 186:233–239

    Article  Google Scholar 

  • Pokrovsky OS, Savenko VS (1995) Experimental modeling of CaCO3 precipitation at the conditions of photosynthesis in seawater. Oceanology 35(N6):805–810

    Google Scholar 

  • Pokrovsky OS, Martinez R, Golubev SV, Kompantzeva EI, Shirokova LS (2008a) Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: a surface speciation approach. Appl Geochem 23:2574–2588

    Article  Google Scholar 

  • Pokrovsky OS, Viers J, Emnova EE, Kompantseva EI, Freydier R (2008b) Copper isotope fractionation during its adsorption on soil and aquatic bacteria and metal hydroxides: possible structural control. Geochim Cosmochim Acta 72:1742–1757

    Article  Google Scholar 

  • Pokrovsky OS, Viers J, Shirokova LS, Shevchenko VP, Filipov AS, Dupré B (2010) Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in Severnaya Dvina River and its tributary. Chem Geol 273:136–149

    Article  Google Scholar 

  • Pokrovsky BG, Mavromatis V, Pokrovsky OS (2011a) Coupled Mg and C isotope variations in Late Precambrian carbonates of the Siberian Platform: a key for understanding sedimentary environments. Chem Geol 290:67–74

    Article  Google Scholar 

  • Pokrovsky OS, Shirokova LS, Kirpotin SN, Audry S, Viers J, Dupré B (2011b) Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of western Siberia. Biogeosciences 8:565–583

    Article  Google Scholar 

  • Pokrovsky OS, Shirokova LS, Zabelina SA, Vorobieva TY, Moreva OY, Chupakov A, Audry S, Viers J (2012) Size fractionation of trace elements in a seasonally stratified boreal lake: control of organic matter and iron colloids. Aquatic Geochem 18:115–139

    Article  Google Scholar 

  • Power IM, Wilson SA, Thom JM, Dipple GM, Southam G (2007) Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem Trans 8:13

    Article  Google Scholar 

  • Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: a biogeochemical model for CO2 sequestration. Chem Geol 260:286–300

    Article  Google Scholar 

  • Power IM, Wilson SA, Dipple GM, Southam G (2011) Modern carbonate microbialites from an asbestos open pit pond, Yukon, Canada. Geobiology 9:180–195

    Google Scholar 

  • Queralt I, Julia R, Plana F, Bischoff JL (1997) A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Saline Lake, Spain. Am Mineral 82:812–819

    Google Scholar 

  • Raven JA, Giordano M (2009) Biomineralization by photosynthetic organisms: evidence of co-evolution of the organisms and their environment? Geobiology 7:140–154

    Article  Google Scholar 

  • Renault RW (1990) Recent carbonate sedimentation and brine evolution in the saline lake basins of the Cariboo Plateau, British Columbia, Canada. Hydrobiologia 197:67–81

    Article  Google Scholar 

  • Renaut RW, Long PR (1989) Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia. Can Sediment Geol 64:239–264

    Article  Google Scholar 

  • Renaut RW, Stead D (1990) Recent magnesite–hydromagnesite sedimentation in Playa Basins of the Caribou Plateau, British Columbia, Geological Fieldwork 1990, Paper 1991-1. British Columbia Geological Survey Branch, pp 279–288

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214

    Article  Google Scholar 

  • Ries JB (2010) Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7:2795–2849

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Russell MJ, Ingham JK, Zedef V, Maktav D, Sunar F, Hall AJ, Fallick AE (1999) Search for signs of ancient life on mars: expectations from hydromagnesite microbialites, Salda Lake, Turkey. J Geol Soc Lond 156:869–888

    Article  Google Scholar 

  • Sarcina M, Mullineaux CW (2000) Effects of tubulin assembly inhibitors on cell division in prokaryotes in vivo. FEMS Microbiol Lett 191:25–29

    Google Scholar 

  • Schauble EA (2011) First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2 +) crystals. Geochim Cosmochim Acta 75:844–869

    Article  Google Scholar 

  • Schmid IH (1987) Turkey’s Salda Lake, a generic model of Australia’s newly discovered magnesite deposits. Ind Miner 239:19–31

    Google Scholar 

  • Scholl DW, Taft WH (1964) Algae, contributors to the formation of calcareous tufa, Mono Lake, California. J Sediment Res 34:309–319

    Google Scholar 

  • Shcherbakova TA, Shevelev AI, Shurkhno RA (2010) Micorbiological nature of modern magnesian carbonates on Lake Salda. Proc Kazanky Univ Nat Sci (Uchenue Zapiski Kazan. Univ.) 152(3):186–191 (in Russian)

  • Shiraishi F, Bissett A, de Beer D, Reimer A, Arp G (2008) Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerhöfer and Deinschwanger Creek, Germany). Geomicrobiol J 25:83–94

    Article  Google Scholar 

  • Shirokova LS, Pokrovsky OS, Viers J, Klimov SI, Moreva OY, Zabelina SA, Vorobieva TY, Dupré B (2010) Diurnal variations of trace elements and heterotrophic bacterioplankton concentration in a small boreal lake of the White Sea basin. Ann Limnol Int J Lim 46:67–75

    Article  Google Scholar 

  • Shirokova LS, Mavromatis V, Bundeleva I, Pokrovsky OS, Bénézeth P, Pearce C, Gerard E, Balor S, Oelkers EH (2011) Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes? Biogeosci Discuss 8:6473–6517

    Article  Google Scholar 

  • Stabel HH (1986) Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae. Limnol Oceanogr 31:1081–1093

    Article  Google Scholar 

  • Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995–998

    Article  Google Scholar 

  • Thompson JB, Shultze-Lam S, Beveridge TJ, Des Marais DJ (1997) Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnol Oceanogr 42:133–141

    Article  Google Scholar 

  • Tipper ET, Galy A, Gaillardet J, Bickle MJ, Elderfield H, Carder EH (2006) The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth Planet Sci Lett 250:241–253

    Article  Google Scholar 

  • Vasyukova EV, Pokrovsky OS, Viers J, Oliva P, Dupré B, Martin F, Candaudaup F (2010) Trace elements in organic- and iron-rich surficial fluids of the Boreal zone: assessing colloidal forms via dialysis and ultrafiltration. Geochim Cosmochim Acta 74:449–468

    Article  Google Scholar 

  • Wombacher F, Eisenhauer A, Böhm F, Gussone N, Regenberg M, Dullo WC, Rüggeberg A (2011) Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim Cosmochim Acta 75:5797–5818

    Article  Google Scholar 

  • Zedef V, Russell MJ, Fallick AE (2000) Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of Southwestern Turkey: a stable isotope study. Econ Geol 95:429–445

    Article  Google Scholar 

Download references

Acknowledgments

Jerome Chmeleff and Carole Causserand are acknowledged for their assistance with the MC-ICP-MS and atomic absorption analyses in Toulouse. This work was supported by ANR CO2-FIX, MC ITN DELTA-MIN (ITN-2008-215360), MC RTN GRASP-CO2 (MRTN-CT-2006-035868), and MC MIN-GRO (MRTN-CT-2006-035488) and the Associated European Laboratory LEAGE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric H. Oelkers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirokova, L.S., Mavromatis, V., Bundeleva, I.A. et al. Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquat Geochem 19, 1–24 (2013). https://doi.org/10.1007/s10498-012-9174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-012-9174-3

Keywords

Navigation