Skip to main content

Advertisement

Log in

Escaping cell death via TRAIL decoy receptors: a systematic review of their roles and expressions in colorectal cancer

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The development of targeted therapy such as tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-based therapy has gained increasing attention as a promising new approach in cancer therapy. TRAIL specifically targets cancer cells while sparing the normal cells, thus, limiting the known side effects of the majority anti-cancer therapies. As more extensive research and clinical trials are conducted, resistance to TRAIL molecule has become one of the significant issues associated with the failure of TRAIL in treating colorectal cancer (CRC). To date, the exact mechanism by which TRAIL resistance may have occurred remains unknown. Interestingly, recent studies have revealed the critical role of the TRAIL decoy receptor family; consisting of decoy receptor 1 (DcR1; also known as TRAIL-R3), decoy receptor 2 (DcR2; also known as TRAIL-R4), and osteoprotegerin (OPG) in driving TRAIL resistance. This review highlights the expression of the decoy receptors in CRC and its possible association with the reduction in sensitivity towards TRAIL treatment based on the currently available in vitro, in vivo, and human studies. Additionally, discrepancies between the outcomes from different research groups are discussed, and essential areas are highlighted for future investigation of the roles of decoy receptors in modulating TRAIL-induced apoptosis. Overcoming TRAIL resistance through modulating the expression(s) and elucidating the role(s) of TRAIL decoy receptors hold great promise for TRAIL-based therapies to be extensively explored in treating human cancers including CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analysed during the current study.

References

  1. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798. https://doi.org/10.1038/nrc2465

    Article  PubMed  CAS  Google Scholar 

  2. von Karstedt S, Montinaro A, Walczak H (2017) Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 17(6):352–366. https://doi.org/10.1038/nrc.2017.28

    Article  CAS  Google Scholar 

  3. Deng D, Shah K (2020) TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer 6(12):989–1001. https://doi.org/10.1016/j.trecan.2020.06.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pan G et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113. https://doi.org/10.1126/science.276.5309.111

    Article  PubMed  CAS  Google Scholar 

  5. Pan G et al (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277(5327):815–818. https://doi.org/10.1126/science.277.5327.815

    Article  PubMed  CAS  Google Scholar 

  6. Schneider P et al (1997) Characterization of two receptors for TRAIL. FEBS Lett 416(3):329–334

    Article  PubMed  CAS  Google Scholar 

  7. Sheridan JP et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327):818–821. https://doi.org/10.1126/science.277.5327.818

    Article  PubMed  CAS  Google Scholar 

  8. Degli-Esposti MA et al (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7(6):813–820. https://doi.org/10.1016/s1074-7613(00)80399-4

    Article  PubMed  CAS  Google Scholar 

  9. Marsters SA et al (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7(12):1003–1006. https://doi.org/10.1016/s0960-9822(06)00422-2

    Article  PubMed  CAS  Google Scholar 

  10. Emery JG et al (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273(23):14363–14367. https://doi.org/10.1074/jbc.273.23.14363

    Article  PubMed  CAS  Google Scholar 

  11. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633. https://doi.org/10.1038/sj.onc.1207232

    Article  PubMed  CAS  Google Scholar 

  12. Kretz AL et al (2019) TRAILblazing strategies for cancer treatment. Cancers (Basel). https://doi.org/10.3390/cancers11040456

    Article  Google Scholar 

  13. Sprick MR et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12(6):599–609. https://doi.org/10.1016/s1074-7613(00)80211-3

    Article  PubMed  CAS  Google Scholar 

  14. Bodmer JL et al (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2(4):241–243. https://doi.org/10.1038/35008667

    Article  PubMed  CAS  Google Scholar 

  15. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. https://doi.org/10.1038/sj.cdd.4400476

    Article  PubMed  CAS  Google Scholar 

  16. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tartaglia LA et al (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74(5):845–853. https://doi.org/10.1016/0092-8674(93)90464-2

    Article  PubMed  CAS  Google Scholar 

  18. van Dijk M et al (2013) Resistance to TRAIL in non-transformed cells is due to multiple redundant pathways. Cell Death Dis 4(7):e702. https://doi.org/10.1038/cddis.2013.214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. French LE, Tschopp J (1999) The TRAIL to selective tumor death. Nat Med 5(2):146–147. https://doi.org/10.1038/5505

    Article  PubMed  CAS  Google Scholar 

  20. Quintavalle C, Condorelli G (2012) Dulanermin in cancer therapy: still much to do. Transl Lung Cancer Res 1(2):158–159. https://doi.org/10.3978/j.issn.2218-6751.2012.02.03

    Article  PubMed  PubMed Central  Google Scholar 

  21. Soria JC et al (2011) Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol 29(33):4442–4451. https://doi.org/10.1200/jco.2011.37.2623

    Article  PubMed  CAS  Google Scholar 

  22. Micheau O, Shirley S, Dufour F (2013) Death receptors as targets in cancer. Br J Pharmacol 169(8):1723–1744. https://doi.org/10.1111/bph.12238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fang F, Wang AP, Yang SF (2005) Antitumor activity of a novel recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand. Acta Pharmacol Sin 26(11):1373–1381. https://doi.org/10.1111/j.1745-7254.2005.00206.x

    Article  PubMed  CAS  Google Scholar 

  24. Tang YM et al (2005) Therapeutic effects of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on non-small lung cell cancer: an experimental with rats. Zhonghua Yi Xue Za Zhi 85(29):2021–2025

    PubMed  Google Scholar 

  25. von Pawel J et al (2014) Phase II trial of mapatumumab, a fully human agonist monoclonal antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1), in combination with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Clin Lung Cancer 15(3):188-196.e2. https://doi.org/10.1016/j.cllc.2013.12.005

    Article  CAS  Google Scholar 

  26. Tolcher AW et al (2007) Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol 25(11):1390–1395. https://doi.org/10.1200/jco.2006.08.8898

    Article  PubMed  CAS  Google Scholar 

  27. Forero-Torres A et al (2013) Phase 2, multicenter, open-label study of tigatuzumab (CS-1008), a humanized monoclonal antibody targeting death receptor 5, in combination with gemcitabine in chemotherapy-naive patients with unresectable or metastatic pancreatic cancer. Cancer Med 2(6):925–932. https://doi.org/10.1002/cam4.137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kindler HL et al (2012) A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or conatumumab (AMG 655) in combination with gemcitabine in patients with metastatic pancreatic cancer. Ann Oncol 23(11):2834–2842. https://doi.org/10.1093/annonc/mds142

    Article  PubMed  CAS  Google Scholar 

  29. Kaplan-Lefko PJ et al (2010) Conatumumab, a fully human agonist antibody to death receptor 5, induces apoptosis via caspase activation in multiple tumor types. Cancer Biol Ther 9(8):618–631. https://doi.org/10.4161/cbt.9.8.11264

    Article  PubMed  CAS  Google Scholar 

  30. Wu X et al (2017) Nanocarriers for TRAIL delivery: driving TRAIL back on track for cancer therapy. Nanoscale 9(37):13879–13904. https://doi.org/10.1039/c7nr04959e

    Article  PubMed  CAS  Google Scholar 

  31. de Miguel D et al (2016) Onto better TRAILs for cancer treatment. Cell Death Differ 23(5):733–747. https://doi.org/10.1038/cdd.2015.174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mérino D et al (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26(19):7046–7055. https://doi.org/10.1128/mcb.00520-06

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clancy L et al (2005) Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci U S A 102(50):18099–18104. https://doi.org/10.1073/pnas.0507329102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Metwalli AR et al (2010) Smac mimetic reverses resistance to TRAIL and chemotherapy in human urothelial cancer cells. Cancer Biol Ther 10(9):885–892. https://doi.org/10.4161/cbt.10.9.13237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tomek S et al (2004) Resistance to TRAIL-induced apoptosis in ovarian cancer cell lines is overcome by co-treatment with cytotoxic drugs. Gynecol Oncol 94(1):107–114. https://doi.org/10.1016/j.ygyno.2004.04.012

    Article  PubMed  CAS  Google Scholar 

  36. Ding J et al (2012) Wogonin and related natural flavones overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein resistance of tumors by down-regulation of c-FLIP protein and up-regulation of TRAIL receptor 2 expression. J Biol Chem 287(1):641–649. https://doi.org/10.1074/jbc.M111.286526

    Article  PubMed  CAS  Google Scholar 

  37. Voelkel-Johnson C, King DL, Norris JS (2002) Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) can be overcome by doxorubicin or adenoviral delivery of full-length TRAIL. Cancer Gene Ther 9(2):164–172. https://doi.org/10.1038/sj.cgt.7700420

    Article  PubMed  CAS  Google Scholar 

  38. Jin Z et al (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279(34):35829–35839. https://doi.org/10.1074/jbc.M405538200

    Article  PubMed  CAS  Google Scholar 

  39. De Toni EN et al (2008) OPG is regulated by β-catenin and mediates resistance to TRAIL-induced apoptosis in colon cancer. Clin Cancer Res 14(15):4713–4718. https://doi.org/10.1158/1078-0432.CCR-07-5019

    Article  PubMed  Google Scholar 

  40. Büneker C, Mohr A, Zwacka RM (2009) The TRAIL-receptor-1: TRAIL-receptor-3 and -4 ratio is a predictor for TRAIL sensitivity of cancer cells. Oncol Rep 21(5):1289–1295. https://doi.org/10.3892/or_00000353

    Article  PubMed  CAS  Google Scholar 

  41. Zhang XD et al (2000) Mechanisms of resistance of normal cells to TRAIL induced apoptosis vary between different cell types. FEBS Lett 482(3):193–199. https://doi.org/10.1016/s0014-5793(00)02042-1

    Article  PubMed  CAS  Google Scholar 

  42. Pan G et al (1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 424(1–2):41–45. https://doi.org/10.1016/s0014-5793(98)00135-5

    Article  PubMed  CAS  Google Scholar 

  43. Sanlioglu AD et al (2005) Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC Cancer 5:54. https://doi.org/10.1186/1471-2407-5-54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Meng RD et al (2000) The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by Adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis. Mol Ther 1(2):130–144. https://doi.org/10.1006/mthe.2000.0025

    Article  PubMed  CAS  Google Scholar 

  45. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14. https://doi.org/10.1111/j.1365-2567.2007.02587.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yang J et al (2018) TRAIL mediates and sustains constitutive NF-κB activation in LGL leukemia. Blood 131(25):2803–2815. https://doi.org/10.1182/blood-2017-09-808816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ricci MS et al (2007) Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12(1):66–80. https://doi.org/10.1016/j.ccr.2007.05.006

    Article  PubMed  CAS  Google Scholar 

  48. Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21(15):2283–2294. https://doi.org/10.1038/sj.onc.1205258

    Article  PubMed  CAS  Google Scholar 

  49. Cummins JM et al (2004) X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res 64(9):3006–3008. https://doi.org/10.1158/0008-5472.can-04-0046

    Article  PubMed  CAS  Google Scholar 

  50. Bernard D et al (2001) Rel/NF-kappaB transcription factors protect against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by up-regulating the TRAIL decoy receptor DcR1. J Biol Chem 276(29):27322–27328. https://doi.org/10.1074/jbc.M011183200

    Article  PubMed  CAS  Google Scholar 

  51. Godwin P et al (2013) Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol 3:120. https://doi.org/10.3389/fonc.2013.00120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Harada M et al (2004) Concentration of osteoprotegerin (OPG) in peritoneal fluid is increased in women with endometriosis. Hum Reprod 19(10):2188–2191. https://doi.org/10.1093/humrep/deh412

    Article  PubMed  CAS  Google Scholar 

  53. Schoppet M et al (2003) Increased osteoprotegerin serum levels in men with coronary artery disease. J Clin Endocrinol Metab 88(3):1024–1028. https://doi.org/10.1210/jc.2002-020775

    Article  PubMed  CAS  Google Scholar 

  54. Marks M et al (2020) Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and receptors in type 1, type 2 and type 17 inflammation in cross-sectional asthma study. Thorax 75(9):808–811. https://doi.org/10.1136/thoraxjnl-2019-214496

    Article  PubMed  Google Scholar 

  55. Bisgin A et al (2010) TRAIL death receptor-4, decoy receptor-1 and decoy receptor-2 expression on CD8+ T cells correlate with the disease severity in patients with rheumatoid arthritis. BMC Musculoskelet Disord 11:192. https://doi.org/10.1186/1471-2474-11-192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Holen I et al (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 62(6):1619–1623

    PubMed  CAS  Google Scholar 

  57. Holen I et al (2005) Osteoprotegerin (OPG) expression by breast cancer cells in vitro and breast tumours in vivo–a role in tumour cell survival? Breast Cancer Res Treat 92(3):207–215. https://doi.org/10.1007/s10549-005-2419-8

    Article  PubMed  CAS  Google Scholar 

  58. Ito R et al (2003) Expression of osteoprotegerin correlates with aggressiveness and poor prognosis of gastric carcinoma. Virchows Arch 443(2):146–151. https://doi.org/10.1007/s00428-003-0845-8

    Article  PubMed  CAS  Google Scholar 

  59. Sheikh MS et al (1999) The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 18(28):4153–4159. https://doi.org/10.1038/sj.onc.1202763

    Article  PubMed  CAS  Google Scholar 

  60. Sträter J et al (2002) Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8(12):3734–3740

    PubMed  Google Scholar 

  61. Galamb O et al (2006) mRNA expression, functional profiling and multivariate classification of colon biopsy specimen by cDNA overall glass microarray. World J Gastroenterol 12(43):6998–7006. https://doi.org/10.3748/wjg.v12.i43.6998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tang Z et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102. https://doi.org/10.1093/nar/gkx247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tsikalakis S et al (2018) Comprehensive expression analysis of TNF-related apoptosis-inducing ligand and its receptors in colorectal cancer: correlation with MAPK alterations and clinicopathological associations. Pathol Res Pract 214(6):826–834. https://doi.org/10.1016/j.prp.2018.04.019

    Article  PubMed  CAS  Google Scholar 

  64. Koornstra JJ et al (2003) Expression of TRAIL (TNF-related apoptosis-inducing ligand) and its receptors in normal colonic mucosa, adenomas, and carcinomas. J Pathol 200(3):327–335. https://doi.org/10.1002/path.1364

    Article  PubMed  CAS  Google Scholar 

  65. Granci V et al (2008) Prognostic significance of TRAIL-R1 and TRAIL-R3 expression in metastatic colorectal carcinomas. Eur J Cancer 44(15):2312–2318. https://doi.org/10.1016/j.ejca.2008.06.042

    Article  PubMed  CAS  Google Scholar 

  66. Cui M et al (2021) IL-8, MSPa, MIF, FGF-9, ANG-2 and AgRP collection were identified for the diagnosis of colorectal cancer based on the support vector machine model. Cell Cycle 20(8):781–791. https://doi.org/10.1080/15384101.2021.1903208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Huang X, Stern DF, Zhao H (2016) Transcriptional profiles from paired normal samples offer complementary information on cancer patient survival-evidence from TCGA pan-cancer data. Sci Rep 6:20567. https://doi.org/10.1038/srep20567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sträter J et al (2002) TRAIL and its receptors in the colonic epithelium: a putative role in the defense of viral infections. Gastroenterology 122(3):659–666. https://doi.org/10.1053/gast.2002.31889

    Article  PubMed  CAS  Google Scholar 

  69. Lipton A et al (2002) Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res 8(7):2306–2310

    PubMed  CAS  Google Scholar 

  70. Tsukamoto S et al (2011) Clinical significance of osteoprotegerin expression in human colorectal cancer. Clin Cancer Res 17(8):2444–2450. https://doi.org/10.1158/1078-0432.CCR-10-2884

    Article  PubMed  CAS  Google Scholar 

  71. Kim HS et al (2016) Down-regulation of osteoprotegerin expression as a novel biomarker for colorectal carcinoma. Oncotarget 7(12):15187–15199. https://doi.org/10.18632/oncotarget.7885

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moon A et al (2016) Downregulation of osteoprotegerin expression in metastatic colorectal carcinoma predicts recurrent metastasis and poor prognosis. Oncotarget 7(48):79319–79326. https://doi.org/10.18632/oncotarget.12686

    Article  PubMed  PubMed Central  Google Scholar 

  73. Velthuis JH et al (2003) Rat colon carcinoma cells that survived systemic immune surveillance are less sensitive to NK-cell mediated apoptosis. Clin Exp Metastasis 20(8):713–721. https://doi.org/10.1023/b:clin.0000006818.27267.03

    Article  PubMed  CAS  Google Scholar 

  74. Velthuis JH et al (2005) Impaired activation of caspases and prevention of mitochondrial dysfunction in the metastatic colon carcinoma CC531s-m2 cell line. Biochem Pharmacol 69(3):463–471. https://doi.org/10.1016/j.bcp.2004.10.010

    Article  PubMed  CAS  Google Scholar 

  75. Sugamura K et al (2008) Synergism of CPT-11 and Apo2L/TRAIL against two differentially sensitive human colon tumor xenografts. Oncology 74(3–4):188–197. https://doi.org/10.1159/000151366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hofmanová J et al (2008) Response of normal and colon cancer epithelial cells to TNF-family apoptotic inducers. Oncol Rep 19(2):567–573

    PubMed  Google Scholar 

  77. Hague A et al (2005) Increased sensitivity to TRAIL-induced apoptosis occurs during the adenoma to carcinoma transition of colorectal carcinogenesis. Br J Cancer 92(4):736–742. https://doi.org/10.1038/sj.bjc.6602387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Toscano F et al (2008) p53-Mediated upregulation of DcR1 impairs oxaliplatin/TRAIL-induced synergistic anti-tumour potential in colon cancer cells. Oncogene 27(30):4161–4171. https://doi.org/10.1038/onc.2008.52

    Article  PubMed  CAS  Google Scholar 

  79. Lippa MS et al (2007) Expression of anti-apoptotic factors modulates Apo2L/TRAIL resistance in colon carcinoma cells. Apoptosis 12(8):1465–1478. https://doi.org/10.1007/s10495-007-0076-6

    Article  PubMed  CAS  Google Scholar 

  80. Ruiz de Almodóvar C et al (2004) Transcriptional regulation of the TRAIL-R3 gene. Vitam Horm 67:51–63. https://doi.org/10.1016/s0083-6729(04)67004-x

    Article  PubMed  Google Scholar 

  81. Pettersen I et al (2005) Osteoprotegerin is expressed in colon carcinoma cells. Anticancer Research 25(6 B):3809–3816

    PubMed  CAS  Google Scholar 

  82. Shao M et al (2022) Capecitabine inhibits epithelial-to-mesenchymal transition and proliferation of colorectal cancer cells by mediating the RANK/RANKL pathway. Oncol Lett 23(3):96. https://doi.org/10.3892/ol.2022.13216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sun T et al (2018) Effects of recombinant circularly permuted tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) (Recombinant Mutant Human TRAIL) in combination with 5-fluorouracil in human colorectal cancer cell lines HCT116 and SW480. Med Sci Monit 24:2550–2561. https://doi.org/10.12659/msm.909390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lacour S et al (2001) Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis. Can Res 61(4):1645–1651

    CAS  Google Scholar 

  85. Sreekumar A et al (2001) Profiling of cancer cells using protein microarrays: Discovery of novel radiation-regulated proteins. Can Res 61(20):7585–7593

    CAS  Google Scholar 

  86. Lamy V et al (2007) Chemopreventive effects of lupulone, a hop {beta}-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 28(7):1575–1581. https://doi.org/10.1093/carcin/bgm080

    Article  PubMed  CAS  Google Scholar 

  87. Lamy V et al (2008) Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis 13(10):1232–1242. https://doi.org/10.1007/s10495-008-0250-5

    Article  PubMed  CAS  Google Scholar 

  88. Yadav VR, Prasad S, Aggarwal BB (2012) Cardamonin sensitizes tumour cells to TRAIL through ROS- and CHOP-mediated up-regulation of death receptors and down-regulation of survival proteins. Br J Pharmacol 165(3):741–753. https://doi.org/10.1111/j.1476-5381.2011.01603.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chen L et al (2016) Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -independent DR5 upregulation. Cell Death Dis 7(8):e2334. https://doi.org/10.1038/cddis.2016.234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Li M et al (2017) Bigelovin triggered apoptosis in colorectal cancer in vitro and in vivo via upregulating death receptor 5 and reactive oxidative species. Sci Rep 7:42176. https://doi.org/10.1038/srep42176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chen HY et al (2018) Regulation of tNOX expression through the ROS-p53-POU3F2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells. J Exp Clin Cancer Res 37(1):161. https://doi.org/10.1186/s13046-018-0837-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Xiang H et al (2002) Enhanced tumor killing by Apo2L/TRAIL and CPT-11 co-treatment is associated with p21 cleavage and differential regulation of Apo2L/TRAIL ligand and its receptors. Oncogene 21(22):3611–3619. https://doi.org/10.1038/sj.onc.1205449

    Article  PubMed  CAS  Google Scholar 

  93. O’Leary L et al (2016) Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene 35(10):1261–1270. https://doi.org/10.1038/onc.2015.180

    Article  PubMed  CAS  Google Scholar 

  94. Van Geelen CM, de Vries EG, de Jong S (2004) Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Updat 7(6):345–358. https://doi.org/10.1016/j.drup.2004.11.002

    Article  PubMed  CAS  Google Scholar 

  95. Neumann S et al (2014) Dominant negative effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes. J Biol Chem 289(23):16576–16587. https://doi.org/10.1074/jbc.M114.559468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wang S et al (2009) NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 6(5):327–334. https://doi.org/10.1038/cmi.2009.43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Slattery ML et al (2018) The NF-κB signalling pathway in colorectal cancer: associations between dysregulated gene and miRNA expression. J Cancer Res Clin Oncol 144(2):269–283. https://doi.org/10.1007/s00432-017-2548-6

    Article  PubMed  CAS  Google Scholar 

  98. Prabhu JS et al (2009) Gene-specific methylation: potential markers for colorectal cancer. Int J Biol Markers 24(1):57–62. https://doi.org/10.5301/jbm.2009.3486

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

All authors would like to thank Kim Jun Cheng for his kind assistance and contributions to this systematic review. All authors would like to express special thanks to Madam Haniffah Mariati Binti Mohamed and Dr. Yamunah Devi A/P Apalasamy for proofreading the article. Madam Haniffah Mariati Binti Mohamed is a Trainer for Business English and Japanese Language and also English-Japanese Language Interpreter. Dr. Yamunah Devi A/P Apalasamy was a Senior Scientific Editor at Proofreading by PhD. She currently serves as a Research Fellow at Universiti Malaya.

Funding

This research was supported by the MAKNA Cancer Research Award 2020 (Grant Number: PV001-2021).

Author information

Authors and Affiliations

Authors

Contributions

KXJJ: conceptualised/visualised idea for the article, performed literature search and data analysis, and wrote the original draft. EHMM: critically revised and edited the work ZAI: conceptualised/visualised idea for the article, verified the literature search and data analysis, critically revised and edited the work, and obtained the funding.

Corresponding author

Correspondence to Zaridatul Aini Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that no potential conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jong, K.X.J., Mohamed, E.H.M. & Ibrahim, Z.A. Escaping cell death via TRAIL decoy receptors: a systematic review of their roles and expressions in colorectal cancer. Apoptosis 27, 787–799 (2022). https://doi.org/10.1007/s10495-022-01774-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01774-5

Keywords

Navigation