Skip to main content
Log in

Targeting mitochondria as a therapeutic anti-gastric cancer approach

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Gastric cancer is regarded as the fifth most common cancer globally but the third most common cancer death. Although systemic chemotherapy is the primary treatment for advanced gastric cancer patients, the outcome of chemotherapy is unsatisfactory. Novel therapeutic strategies and potential alternative treatments are therefore needed to overcome the impact of this disease. At a cellular level, mitochondria play an important role in cell survival and apoptosis. A growing body of studies have shown that mitochondria play a central role in the regulation of cellular function, metabolism, and cell death during carcinogenesis. Interestingly, the impact of mitochondrial dynamics, including fission/fusion and mitophagy, on carcinogenesis and cancer progression has also been reported, suggesting the potential targeting of mitochondrial dynamics for the treatment of cancer. This review not only comprehensively summarizes the homeostasis of gastric cancer cells, but the potential therapeutic interventions for the targeting of mitochondria for gastric cancer therapy are also highlighted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

None.

Code availability

None.

References

  1. Sung H, Ferlay J, Siegel RL et al (2020) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. Yan H, Qiu C, Sun W et al (2018) Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy. Oncol Rep. https://doi.org/10.3892/or.2018.6252

    Article  PubMed  PubMed Central  Google Scholar 

  3. Almasi S, Kennedy BE, El-Aghil M et al (2018) TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway. J Biol Chem. https://doi.org/10.1074/jbc.M117.817635

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang HM, Chuang SM, Su YC et al (2011) Down-regulation of tumor-associated NADH oxidase, tNOX (ENOX2), enhances capsaicin-induced inhibition of gastric cancer cell growth. Cell Biochem Biophys. https://doi.org/10.1007/s12013-011-9218-0

    Article  PubMed  Google Scholar 

  5. Kong GM, Tao WH, Diao YL et al (2016) Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway. World J Gastroenterol. https://doi.org/10.3748/wjg.v22.i11.3186

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huang L, Cai C, Dang W et al (2019) Propyl isothiocyanate induces apoptosis in gastric cancer cells by oxidative stress via glutathione depletion. Oncol Lett. https://doi.org/10.3892/ol.2019.10875

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mao Y, Song G, Cai Q et al (2006) Hydrogen peroxide-induced apoptosis in human gastric carcinoma MGC803 cells. Cell Biol Int. https://doi.org/10.1016/j.cellbi.2005.12.008

    Article  PubMed  Google Scholar 

  8. Barati N, Momtazi-Borojeni AA, Majeed M et al (2019) Potential therapeutic effects of curcumin in gastric cancer. J Cell Physiol. https://doi.org/10.1002/jcp.27229

    Article  PubMed  Google Scholar 

  9. Lo Y-C, Yang Y-C, Wu IC et al (2005) Capsaicin-induced cell death in a human gastric adenocarcinoma cell line. World J Gastroenterol. https://doi.org/10.3748/wjg.v11.i40.6254

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Q, Liu G, Hu C (2019) Molecular classification of gastric adenocarcinoma. Gastroenterol Res. https://doi.org/10.14740/gr1187

    Article  Google Scholar 

  11. Berlth F, Bollschweiler E, Drebber U et al (2014) Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. World J Gastroenterol. https://doi.org/10.3748/wjg.v20.i19.5679

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matsuhashi N, Saio M, Matsuo A et al (2005) The evaluation of gastric cancer sensitivity to 5-FU/CDDP in terms of induction of apoptosis: time- and p53 expression-dependency of anti-cancer drugs. Oncol Rep 14:609–615

    CAS  PubMed  Google Scholar 

  13. Liu L, Li T, Tan J et al (2014) NG as a novel nitric oxide donor induces apoptosis by increasing reactive oxygen species and inhibiting mitochondrial function in MGC803 cells. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2014.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang H, Zhao H, Dong X et al (2020) Tomentosin induces apoptotic pathway by blocking inflammatory mediators via modulation of cell proteins in AGS gastric cancer cell line. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22501

    Article  PubMed  Google Scholar 

  15. Kim JG, Lee SC, Kim O-H et al (2017) HSP90 inhibitor 17-DMAG exerts anticancer effects against gastric cancer cells principally by altering oxidant-antioxidant balance. Oncotarget. https://doi.org/10.18632/oncotarget.17007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao W, Yang W, Lou G et al (2009) Phase II trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) as first-line treatment for advanced gastric cancer. Anticancer Drugs. https://doi.org/10.1097/CAD.0b013e3283273509

    Article  PubMed  Google Scholar 

  17. Kim DJ, Jeena MT, Kim OH et al (2020) Novel therapeutic application of self-assembly peptides targeting the mitochondria in in vitro and in vivo experimental models of gastric cancer. Int J Mol Sci. https://doi.org/10.3390/ijms21176126

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Wang Q, Wang T et al (2012) Inhibition of human gastric carcinoma cell growth in vitro by a polysaccharide from Aster tataricus. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2012.06.019

    Article  PubMed  Google Scholar 

  19. Marin JJ, Al-Abdulla R, Lozano E et al (2016) Mechanisms of resistance to chemotherapy in gastric cancer. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520615666150803125121

    Article  PubMed  Google Scholar 

  20. Guideline Committee of the Korean Gastric Cancer Association DWG, Review P (2018) Korean practice guideline for gastric cancer 2018: an evidence-based, multi-disciplinary approach. J Gastric Cancer. https://doi.org/10.5230/jgc.2019.19.e8

    Article  Google Scholar 

  21. Wu Z, Wang L, Wen Z et al (2021) Integrated analysis identifies oxidative stress genes associated with progression and prognosis in gastric cancer. Sci Rep. https://doi.org/10.1038/s41598-021-82976-w

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tamura M, Matsui H, Tomita T et al (2014) Mitochondrial reactive oxygen species accelerate gastric cancer cell invasion. J Clin Biochem Nutr. https://doi.org/10.3164/jcbn.13-36

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mazumder S, De R, Debsharma S et al (2019) Indomethacin impairs mitochondrial dynamics by activating the PKCζ-p38-DRP1 pathway and inducing apoptosis in gastric cancer and normal mucosal cells. J Biol Chem. https://doi.org/10.1074/jbc.RA118.004415

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu Z, Ng EK, Liang NC et al (2005) Cell death induced by Pteris semipinnata L. is associated with p53 and oxidant stress in gastric cancer cells. FEBS Lett. https://doi.org/10.1016/j.febslet.2005.01.050

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang XW, Wang S, Tu PF et al (2018) Sesquiterpene lactone from Artemisia argyi induces gastric carcinoma cell apoptosis via activating NADPH oxidase/reactive oxygen species/mitochondrial pathway. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2018.07.053

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li X, Fang P, Mai J et al (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. https://doi.org/10.1186/1756-8722-6-19

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Zhang Z, Wang J et al (2019) Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther. https://doi.org/10.2147/OTT.S189687

    Article  PubMed  PubMed Central  Google Scholar 

  28. Matsunaga T, Tsuji Y, Kaai K et al (2010) Toxicity against gastric cancer cells by combined treatment with 5-fluorouracil and mitomycin c: implication in oxidative stress. Cancer Chemother Pharmacol. https://doi.org/10.1007/s00280-009-1192-5

    Article  PubMed  Google Scholar 

  29. (NCCN) NCCN. Gastric Cancer. 2021 [updated March 9, 2021]; https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf.

  30. Arai H, Iwasa S, Boku N et al (2019) Fluoropyrimidine with or without platinum as first-line chemotherapy in patients with advanced gastric cancer and severe peritoneal metastasis: a multicenter retrospective study. BMC Cancer. https://doi.org/10.1186/s12885-019-5720-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Matsuhashi N, Saio M, Matsuo A et al (2004) Expression of p53 protein as a predictor of the response to 5-fluorouracil and cisplatin chemotherapy in human gastrointestinal cancer cell lines evaluated with apoptosis by use of thin layer collagen gel. Int J Oncol 24:807–813

    CAS  PubMed  Google Scholar 

  32. Wagner AD, Wedding U (2009) Advances in the pharmacological treatment of gastro-oesophageal cancer. Drugs Aging. https://doi.org/10.2165/11315740-000000000-00000

    Article  PubMed  Google Scholar 

  33. Desmoulin F, Gilard V, Malet-Martino M et al (2002) Metabolism of capecitabine, an oral fluorouracil prodrug: (19)F NMR studies in animal models and human urine. Drug Metab Dispos. https://doi.org/10.1124/dmd.30.11.1221

    Article  PubMed  Google Scholar 

  34. Holohan C, Van Schaeybroeck S, Longley DB et al (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. https://doi.org/10.1038/nrc3599

    Article  PubMed  Google Scholar 

  35. Cunningham D (2006) Is oxaliplatin the optimal platinum agent in gastric cancer? Eur J Cancer Suppl. https://doi.org/10.1016/S1359-6349(06)70003-9

    Article  Google Scholar 

  36. Huang D, Duan H, Huang H et al (2016) Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci Rep. https://doi.org/10.1038/srep20502

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sakamoto J, Matsui T, Kodera Y (2009) Paclitaxel chemotherapy for the treatment of gastric cancer. Gastric Cancer. https://doi.org/10.1007/s10120-009-0505-z

    Article  PubMed  Google Scholar 

  38. Doxorubicin AK (2007). In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, New York, pp 1–5

    Google Scholar 

  39. Florou D, Patsis C, Ardavanis A et al (2013) Effect of doxorubicin, oxaliplatin, and methotrexate administration on the transcriptional activity of BCL-2 family gene members in stomach cancer cells. Cancer Biol Ther. https://doi.org/10.4161/cbt.24591

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhong YJ, Liu SP, Firestone RA et al (2013) Anticancer effects of Ac-Phe-Lys-PABC-doxorubicin via mitochondria-centered apoptosis involving reactive oxidative stress and the ERK1/2 signaling pathway in MGC-803 cells. Oncol Rep. https://doi.org/10.3892/or.2013.2629

    Article  PubMed  Google Scholar 

  41. Tangchirakhaphan S, Innajak S, Nilwarangkoon S et al (2018) Mechanism of apoptosis induction associated with ERK1/2 upregulation via goniothalamin in melanoma cells. Exp Ther Med. https://doi.org/10.3892/etm.2018.5762

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vallecillo-Hernández J, Barrachina MD, Ortiz-Masiá D et al (2018) Indomethacin disrupts autophagic flux by inducing lysosomal dysfunction in gastric cancer cells and increases their sensitivity to cytotoxic drugs. Sci Rep. https://doi.org/10.1038/s41598-018-21455-1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miller BA (2019) TRPM2 in cancer. Cell Calcium. https://doi.org/10.1016/j.ceca.2019.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang G-E, Jin H-L, Lin X-K et al (2013) Anti-tumor effects of Mfn2 in gastric cancer. Int J Mol Sci. https://doi.org/10.3390/ijms140713005

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tilokani L, Nagashima S, Paupe V et al (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. https://doi.org/10.1042/ebc20170104

    Article  PubMed  PubMed Central  Google Scholar 

  46. Indo HP, Matsui H, Chen J et al (2015) Manganese superoxide dismutase promotes interaction of actin, S100A4 and Talin, and enhances rat gastric tumor cell invasion. J Clin Biochem Nutr. https://doi.org/10.3164/jcbn.14-146

    Article  PubMed  PubMed Central  Google Scholar 

  47. Malafa M, Margenthaler J, Webb B et al (2000) MnSOD expression is increased in metastatic gastric cancer. J Surg Res. https://doi.org/10.1006/jsre.1999.5773

    Article  PubMed  Google Scholar 

  48. Wang L, Liu Y, Zhao TL et al (2019) Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer. Phytomedicine. https://doi.org/10.1016/j.phymed.2018.12.011

    Article  PubMed  Google Scholar 

  49. Ohyama K, Akaike T, Imai M et al (2005) Human gastric signet ring carcinoma (KATO-III) cell apoptosis induced by Vitex agnus-castus fruit extract through intracellular oxidative stress. Int J Biochem Cell Biol. https://doi.org/10.1016/j.biocel.2005.02.016

    Article  PubMed  Google Scholar 

  50. Takeda Y, Togashi H, Matsuo T et al (2001) Growth inhibition and apoptosis of gastric cancer cell lines by Anemarrhena asphodeloides Bunge. J Gastroenterol. https://doi.org/10.1007/s005350170135

    Article  PubMed  Google Scholar 

  51. Liu E, Liang T, Wang X et al (2015) Apoptosis induced by farrerol in human gastric cancer SGC-7901 cells through the mitochondrial-mediated pathway. Eur J Cancer Prev. https://doi.org/10.1097/cej.0000000000000104

    Article  PubMed  PubMed Central  Google Scholar 

  52. Limpakan Yamada S, Wongsirisin P, Yodkeeree S et al (2019) Interleukin-8 associated with chemosensitivity and poor chemotherapeutic response to gastric cancer. J Gastrointest Oncol. https://doi.org/10.21037/jgo.2019.09.02

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nagamine M, Okumura T, Tanno S et al (2003) PPAR gamma ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells. Cancer Sci. https://doi.org/10.1111/j.1349-7006.2003.tb01443.x

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand (NC), The National Research Council of Thailand 2563NRCT321511 (KS), the Chiang Mai University Fundamental Fund (KS), the Senior Research Scholar grant from the National Research Council of Thailand (SCC), and the Chiang Mai University Center of Excellence Award (NC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception. Literature search and data collection were performed by PT. The first draft of the manuscript was written by PT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Krekwit Shinlapawittayatorn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanprasert, P., Limpakan (Yamada), S., Chattipakorn, S.C. et al. Targeting mitochondria as a therapeutic anti-gastric cancer approach. Apoptosis 27, 163–183 (2022). https://doi.org/10.1007/s10495-022-01709-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01709-0

Keywords

Navigation