Skip to main content

Advertisement

Log in

The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in Celastrol against angiotensin II-mediated HepG2 cell proliferation

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Angiotensin II (AngII) is an important factor that promotes the proliferation of cancer cells, whereas celastrol exhibits a significant antitumor activity in various cancer models. Whether celastrol can effectively suppress AngII mediated cell proliferation remains unknown. In this study, we studied the effect of celastrol on AngII-induced HepG2 cell proliferation and evaluated its underlying mechanism. The results revealed that AngII was able to significantly promote HepG2 cell proliferation via up-regulating AngII type 1 (AT1) receptor expression, improving mitochondrial respiratory function, enhancing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, increasing the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines. The excess ROS from mitochondrial dysfunction is able to cause the apoptosis of tumor cells via activating caspase3 signal pathway. In addition, the reaction between NO and ROS results in the formation of peroxynitrite (ONOO), and then promoting cell damage. celastrol dramatically enhanced ROS generation, thereby causing cell apoptosis through inhibiting mitochodrial respiratory function and boosting the expression levels of AngII type 2 (AT2) receptor without influencing NADPH oxidase activity. PD123319 as a special inhibitor of AT2R was able to effectively decreased the levels of inflammatory cytokines and endothelial nitric oxide synthase (eNOS) activity, but only partially attenuate the effect of celastrol on AnII mediated HepG2 cell proliferation. Thus, celastrol has the potential for use in liver cancer therapy. ROS derived from mitochondrial is an important factor for celastrol to suppress HepG2 cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AngII:

Angiotensin II

NADPH oxidase:

Nicotinamide adenine dinucleotide phosphate oxidase

AT1R:

AngII type 1 receptor

AT2R:

AngII type 2 receptor

ROS:

Reactive oxygen species

MTT:

3-(4,5-Dimethythiazol-2-yl)-2,5-diphenyl-tetrazolium bromide

eNOS:

Endothelial nitric oxide synthase

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

EDTA:

Trypsin–ethylene diamine tetraacetic acid

VCAM:

Vascular cell adhesion molecule

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Benedetti S, Nuvoli B, Catalani S, Galati R (2015) Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget 6:16848–16865

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Okada Y, Oya M (2012) Regulation of monocyte chemoattractant protein-1 through angiotensin II type 1 receptor in prostate cancer. Am J Pathol 180:1008–1016

    Article  PubMed  Google Scholar 

  5. de Cavanagh EM, Inserra F, Ferder L (2011) Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria? Cardiovasc Res 89:31–40

    Article  PubMed  Google Scholar 

  6. Gelinas L, Falkenham A, Oxner A, Sopel M, Légaré JF (2011) Highly purified human peripheral blood monocytes produce IL-6 but not TNFalpha in response to angiotensin II. J Renin Angiotensin Aldosterone Syst 12:295–303

    Article  CAS  PubMed  Google Scholar 

  7. Okamoto K, Tajima H, Ohta T, Nakanuma S, Hayashi H, Nakagawara H, Onishi I, Takamura H, Ninomiya I, Kitagawa H, Fushida S, Tani T, Fujimura T, Kayahara M, Harada S, Wakayama T, Iseki S (2010) Angiotensin II induces tumor progression and fibrosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. Int J Oncol 37:1251–1259

    Article  CAS  PubMed  Google Scholar 

  8. Du N, Feng J, Hu LJ, Sun X, Sun HB, Zhao Y, Yang YP, Ren H (2012) Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling. Oncol Rep 27:1893–1903

    CAS  PubMed  Google Scholar 

  9. Zhao Y, Chen X, Cai L, Yang Y, Sui G, Fu S (2010) Angiotensin II/angiotensin II type I receptor (AT1R) signaling promotes MCF-7 breast cancer cells survival via PI3-kinase/Akt pathway. J Cell Physiol 225:168–173

    Article  CAS  PubMed  Google Scholar 

  10. Zhou L, Luo Y, Sato S, Tanabe E, Kitayoshi M, Fujiwara R, Sasaki T, Fujii K, Ohmori H, Kuniyasu H (2014) Role of two types of Angiotensin II receptors in colorectal carcinoma progression. Pathobiology 81:169–175

    Article  CAS  PubMed  Google Scholar 

  11. Du H, Liang Z, Zhang Y, Jie F, Li J, Fei Y, Huang Z, Pei N, Wang S, Li A, Chen B, Zhang Y, Sumners C, Li M, Li H (2013) Effects of Angiotensin II type 2 receptor overexpression on the growth of hepatocellular carcinoma cells in vitro and in vivo. PLoS One 8:e83754–e83754

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Carvalho DD, Sadok A, Bourgarel-Rey V, Gattacceca F, Penel C, Lehmann M, Kovacic H (2008) Nox1 downstream of 12-lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells. Int J Cancer 122:1757–1764

    Article  PubMed  Google Scholar 

  13. Lee IT, Yang CM (2012) Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 84:581–590

    Article  CAS  PubMed  Google Scholar 

  14. Chen G, Zhang X, Zhao M, Wang Y, Cheng X, Wang D, Xu Y, Du Z, Yu X (2011) Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells. BMC Cancer 11:170–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poyton RO, Ball KA, Castello PR (2009) Castello. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 20:332–340

    Article  CAS  PubMed  Google Scholar 

  16. Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58

    Article  CAS  PubMed  Google Scholar 

  17. Kozieł R, Pircher H, Kratochwil M, Lener B, Hermann M, Dencher NA, Jansen- Dürr P (2013) Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem J 452:231–239

    Article  PubMed  Google Scholar 

  18. Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB (2010) Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2:2428–2466

    Article  CAS  Google Scholar 

  19. Kim JE, Lee MH, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Han SY, Han KH, Han JY, Cha DR (2013) Celastrol, an NF-kB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS One 8:e62068–e62068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kannaiyan R, Shanmugam MK, Sethi G (2011) Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 303:9–20

    Article  CAS  PubMed  Google Scholar 

  21. Lee JH, Won YS, Park KH, Lee MK, Tachibana H, Yamada K, Seo KI (2012) Celastrol inhibits growth and induces apoptotic cell death in melanoma cells via the activation ROS-dependent mitochondrial pathway and the suppression of PI3K/AKT signaling. Apoptosis 17:1275–1286

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, He Y, Yang M, Sun H, Zhang S, Wang C (2013) Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22(phox) expression. Toxicol Appl Pharmacol 273:59–67

    Article  CAS  PubMed  Google Scholar 

  23. Fruehauf JP, Meyskens FL Jr (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794

    Article  CAS  PubMed  Google Scholar 

  24. Sauer H, Wartenberg M (2005) Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 7:1423–1434

    Article  CAS  PubMed  Google Scholar 

  25. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  26. Chen F, Barman S, Yu Y, Haigh S, Wang Y, Black SM, Rafikov R, Dou H, Bagi Z, Han W, Su Y, Fulton DJ (2014) Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 73:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moe KT, Khairunnisa K, Yin NO, Chin-Dusting J, Wong P, Wong MC (2014) Tumor necrosis factor-α-induced nuclear factor-kappaB activation in human cardiomyocytes is mediated by NADPH oxidase. J Physiol Biochem 70:769–779

    Article  CAS  PubMed  Google Scholar 

  28. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  CAS  PubMed  Google Scholar 

  29. Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D’Alessio A, Sirabella R, Secondo A, Sibaud L, Di Renzo GF (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139:125–133

    Article  CAS  PubMed  Google Scholar 

  30. Gotoh T, Mori M (2006) Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol 26:1439–1446

    Article  CAS  PubMed  Google Scholar 

  31. Yin T, Ma X, Zhao L, Cheng K, Wang H (2008) Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res 18:792–799

    Article  CAS  PubMed  Google Scholar 

  32. Kapoor S (2014) Celastrol and attenuation of tumor growth in systemic malignancies: a clinical perspective. J Cell Physiol 229:258–258

    Article  CAS  PubMed  Google Scholar 

  33. Kannaiyan R, Manu KA, Chen L, Li F, Rajendran P, Subramaniam A, Lam P, Kumar AP, Sethi G (2011) Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways. Apoptosis 16:1028–1041

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka N, Miyajima A, Kosaka T, Shirotake S, Hasegawa M, Kikuchi E, Oya M (2010) Cis-dichlorodiammineplatinum upregulates angiotensin II type 1 receptors through reactive oxygen species generation and enhances VEGF production in bladder cancer. Mol Cancer Ther 9:2982–2992

    Article  CAS  PubMed  Google Scholar 

  35. Fazeli G, Stopper H, Schinzel R, Ni CW, Jo H, Schupp N (2012) Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4. Mutagenesis 27:673–681

    Article  CAS  PubMed  Google Scholar 

  36. Fleury C, Mignotte B, Vayssiere JL(2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

  37. Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20

    Article  CAS  PubMed  Google Scholar 

  38. Hagihara GN, Lobato NS, Filgueira FP, Akamine EH, Aragão DS, Casarini DE, Carvalho MH, Fortes ZB (2014) Upregulation of ERK1/2-eNOS via AT2 receptors decreases the contractile response to angiotensin II in resistance mesenteric arteries from obese rats. PLoS One 9:e106029

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yayama K, Hiyoshi H, Imazu D, Okamoto H (2006) Angiotensin II stimulates endothelial NO synthase phosphorylation in thoracic aorta of mice with abdominal aortic banding via type 2 receptor. Hypertension 48:958–964

    Article  CAS  PubMed  Google Scholar 

  40. Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496

    Article  CAS  PubMed  Google Scholar 

  41. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee FT, Cao Z, Long DM, Panagiotopoulos S, Jerums G, Cooper ME, Forbes JM (2004) Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J Am Soc Nephrol 15:2139–2151

    Article  CAS  PubMed  Google Scholar 

  44. Silveira KD, Coelho FM, Vieira AT, Barroso LC, Queiroz-Junior CM, Costa VV, Sousa LF, Oliveira ML, Bader M, Silva TA, Santos RA, Silva AC, Teixeira MM (2013) Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides 46:53–63

    Article  CAS  PubMed  Google Scholar 

  45. Smith GR, Missailidis S (2004) Cancer, inflammation and the AT1 and AT2 receptors. J Inflamm (Lond) 1:3–3

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Lin at Xi’an Jiaotong University (Xi’an, Shanxi, China) for providing the HepG2 cell line. The authors would like to thank all members of the Department of Pharmacology, Binzhou Medical University for helpful discussions and technical assistance. The present study was supported by the Project of Shandong Province Higher Educational Science and Technology Program (No. J10LF89), the Project of Shandong Province Medicine & Health Science and Technology Program (2011HZ003), the Natural Science Foundation of Shandong Province (No. ZR2012HM076), and the Foundation of Taishan Scholar (tshw20110515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-yun Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Author contributions

Participated in research designC.Y. Wang, Q.Y. Zheng. Conducted experiments: C.Y. Wang, X. Liu, R.W. Gao, M. Li, C.F. Si, Y.P. He, M. Wang, Y. Wu, Y.P. Zhang, Y. Yang. Performed data analysis: C.Y. Wang, X. Liu, R.W. Gao, J.R. Zhang. Wrote or contributed to the writing of the manuscript: C.Y. Wang, X. Liu, R.W. Gao.

Additional information

Xin Liu and Rui-wei Gao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, Rw., Li, M. et al. The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in Celastrol against angiotensin II-mediated HepG2 cell proliferation. Apoptosis 21, 1315–1326 (2016). https://doi.org/10.1007/s10495-016-1294-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1294-6

Keywords

Navigation