Skip to main content
Log in

The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The sesquiterpene α-bisabolol (α-BSB) has been shown to be an effective cytotoxic agent for a variety of human cancer cells in culture and animal models. However, much of its intracellular action remains elusive. We evaluated the cytotoxic action of α-BSB against CML-T1, Jurkat and HeLa cell lines, as preclinical models for myeloid, lymphoid and epithelial neoplasias. The approach included single cell analysis (flow cytometry, immunocytology) combined with cytotoxicity and proliferation assays to characterize organelle damage, autophagy, cytostatic effect, and apoptosis. The study focuses on the relevant steps in the cytotoxic cascade triggered by α-BSB: (1) the lipid rafts through which α-BSB enters the cells, (2) the opening of pores in the mitochondria and lysosomes, (3) the activation of both caspase-dependent and caspase-independent cell death pathways, (4) the induction of autophagy and (5) apoptosis. The effectiveness of α-BSB as an agent against tumor cells is grounded on its capability to act on different layers of cell regulation to elicit different concurrent death signals, thereby neutralizing a variety of aberrant survival mechanisms leading to treatment resistance in neoplastic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAF:

Autophagic activity factor

AO:

Acridine orange, a red fluorescent lysosomotropic probe

α-BSB:

α-bisabolol

AM:

Acetoxymethyl

CFSE:

Carboxyfluorescein succinimidyl ester

CM:

Complete medium

CM-H2DCFDA:

5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester

CML-T1, Jurkat, HeLa cell lines:

Blast crisis of chronic myeloid leukemia, acute T cell leukemia, cervical cancer cell line, respectively

Cyto-ID® Green:

Cationic amphiphilic tracer that selectively stains autophagic vacuoles

DAPI:

4′,6-Diamidino-2-phenylindole, fluorescent nuclear counterstain

ΔΨm :

Mitochondrial transmembrane potential

FSC:

Forward scatter (in flow cytometry)

HBSS:

Hank’s balanced salt solution

IC50 :

Half maximal inhibitory concentration

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide, red fluorescent mitochondrial counterstain

LT Green:

Lysosomotropic probe

mPTP:

Mitochondrial permeability transition pore

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Q-VD-Oph:

Pan-caspase inhibitor

ROS:

Reactive oxygen species

SSC:

Side scatter (in flow cytometry)

TO-PRO®-3:

Red-fluorescent nuclear and chromosome counterstain

References

  1. Cavalieri E, Rigo A, Bonifacio M, Carcereri de Prati A, Guardalben E, Bergamini C et al (2011) Pro-apoptotic activity of α-bisabolol in preclinical models of primary human acute leukemia cells. J Transl Med 9:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonifacio M, Rigo A, Guardalben E, Bergamini C, Cavalieri E, Fato R et al (2012) α-bisabolol is an effective proapoptotic agent against BCR-ABL(+) cells in synergism with Imatinib and Nilotinib. PLoS One 7:e46674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonifacio M, Rigo A, Bonalumi A, Guardalben E, Nichele I, Sissa C et al (2011) The sesquiterpene oil α-bisabolol induces apoptosis of B-chronic lymphocytic leukemia primary cells. Blood (ASH Annual Meeting Abstracts) 118:1319

    Google Scholar 

  4. Seki T, Kokuryo T, Yokoyama Y, Suzuki H, Itatsu K, Nakagawa A et al (2011) Antitumor effect of α-bisabolol against pancreatic cancer. Cancer Sci 102:2199–2205

    Article  CAS  PubMed  Google Scholar 

  5. Costarelli L, Malavolta M, Giacconi R, Cipriano C, Gasparini N, Tesei S et al (2010) In vivo effect of α-bisabolol, a non toxic sesquiterpene alcohol, on the induction of spontaneous mammary tumors in HER-2/neu transgenic mice. Oncol Res 18:409–418

    Article  PubMed  Google Scholar 

  6. Cavalieri E, Mariotto S, Fabrizi C, de Prati AC, Gottardo R, Leone S et al (2004) α-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Commun 315:589–594

    Article  CAS  PubMed  Google Scholar 

  7. Cavalieri E, Bergamini C, Mariotto S, Leoni S, Perbellini L, Darra E et al (2009) Involvement of mitochondrial permeability transition pore opening in α-bisabolol induced apoptosis. FEBS J 276:3990–4000

    Article  CAS  PubMed  Google Scholar 

  8. Chen W, Hou J, Yin Y, Jang J, Zheng Z, Fan H, Zou G (2010) α-Bisabolol induces dose- and time-dependent apoptosis in HepG2 cells via a Fas- and mitochondrial-related pathway, involves p53 and NFkappaB. Biochem Pharmacol 80:247–254

    Article  CAS  PubMed  Google Scholar 

  9. Darra E, Abdel-Azeim S, Manara A, Shoji K, Maréchal JD, Mariotto S et al (2008) Insight into the apoptosis-inducing action of α-bisabolol towards malignant tumor cells: involvement of lipid rafts and Bid. Arch Biochem Biophys 476:113–123

    Article  CAS  PubMed  Google Scholar 

  10. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  11. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T et al (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461:654–658

    Article  CAS  PubMed  Google Scholar 

  13. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737

    Article  CAS  PubMed  Google Scholar 

  14. Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E et al (2008) Senescence, apoptosis or autophagy? When a damaged cell must decide its path, a mini-review. Gerontology 54:92–99

    Article  PubMed  Google Scholar 

  15. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA et al (2007) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3:374–376

    Article  CAS  PubMed  Google Scholar 

  18. Malik SA, Orhon I, Morselli E, Criollo A, Shen S, Mariño G et al (2011) BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30:3918–3929

    Article  CAS  PubMed  Google Scholar 

  19. Maiuri MC, Criollo A, Kroemer G (2010) Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J 29:515–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897

    Article  CAS  PubMed  Google Scholar 

  22. Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–1055

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Zhang C, Yan X, Lan B, Wang J, Wei C et al (2015) A novel bioavailable BH3 mimetic efficiently inhibits colon cancer via cascade effects of mitochondria. Clin Cancer Res 22(6):1445–1458

    Article  PubMed  Google Scholar 

  24. Vinante F, Rigo A, Vincenzi C, Ricetti MM, Marrocchella R, Chilosi M et al (1993) IL-8 mRNA expression and IL-8 production by acute myeloid leukemia cells. Leukemia 7:1552–1556

    CAS  PubMed  Google Scholar 

  25. Vinante F, Rigo A, Tecchio C, Morosato L, Nadali G, Chilosi M et al (1998) Serum levels of p55 and p75 soluble TNF receptors in adult acute leukaemia at diagnosis: correlation with clinical and biological features and outcome. Br J Haematol 102:1025–1034

    Article  CAS  PubMed  Google Scholar 

  26. Vinante F, Rigo A, Papini E, Cassatella MA, Pizzolo G (1999) Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor expression by acute myeloid leukemia cells. Blood 93:1715–1723

    CAS  PubMed  Google Scholar 

  27. Rigo A, Gottardi M, Zamò A, Mauri P, Bonifacio M, Krampera M et al (2010) Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol Cancer 9:273

    Article  PubMed  PubMed Central  Google Scholar 

  28. van Nierop K, Muller FJ, Stap J, Van Noorden CJ, van Eijk M, de Groot C (2006) Lysosomal destabilization contributes to apoptosis of germinal center B-lymphocytes. J Histochem Cytochem 54:1425–1435

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  CAS  PubMed  Google Scholar 

  30. Vinante F, Marchi M, Rigo A, Scapini P, Pizzolo G, Cassatella MA (1999) Granulocyte-macrophage colony-stimulating factor induces expression of heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor and sensitivity to diphtheria toxin in human neutrophils. Blood 94:3169–3177

    CAS  PubMed  Google Scholar 

  31. Vinante F, Rigo A (2013) Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel) 5:1180–1201

    Article  CAS  Google Scholar 

  32. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothe K, Lin H, Lin KB, Leung A, Wang HM, Malekesmaeili M et al (2014) The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells. Blood 123:3622–3634

    Article  CAS  PubMed  Google Scholar 

  34. Vinante F, Rigo A, Scupoli MT, Pizzolo G (2002) CD30 triggering by agonistic antibodies regulates CXCR4 expression and CXCL12 chemotactic activity in the cell line L540. Blood 99:52–60

    Article  CAS  PubMed  Google Scholar 

  35. Rodríguez-Enfedaque A, Delmas E, Guillaume A, Gaumer S, Mignotte B, Vayssiére JL, Renaud F (2012) zVAD-fmk upregulates caspase-9 cleavage and activity in etoposide-induced cell death of mouse embryonic fibroblasts. Biochem Biophys Acta 1823:1343–1352

    Article  PubMed  Google Scholar 

  36. Rigo A, Gottardi M, Damiani E, Bonifacio M, Ferrarini I, Mauri P, Vinante F (2012) CXCL12 and [N33A]CXCL12 in 5637 and HeLa cells: regulating HER1 phosphorylation via calmodulin/calcineurin. PLoS One 7:e34432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2:2049–2056

    Article  CAS  PubMed  Google Scholar 

  38. Troiano L, Ferraresi R, Lugli E, Nemes E, Roat E, Nasi M et al (2007) Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat Protoc 2:2719–2727

    Article  CAS  PubMed  Google Scholar 

  39. Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12:803–813

    Article  CAS  PubMed  Google Scholar 

  40. Métivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I, Kroemer G (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61:157–163

    Article  PubMed  Google Scholar 

  41. Bradley DF, Wolf MK (1959) Aggregation of dyes bound to polyanions. Proc Natl Acad Sci USA 145:944–952

    Article  Google Scholar 

  42. Olsson GM, Rungby J, Rundquist I, Brunk UT (1989) Evaluation of lysosomal stability in living cultured macrophages by cytofuorometry. Effect of silver lactate and hypotonic conditions. Virchows Arch B Cell Pathol Mol Pathol 56:263–269

    Article  CAS  Google Scholar 

  43. Zdolsek JM, Olsson GM, Brunk UT (1990) Photooxidative damage to lysosomes of cultured macrophages by acridine orange. Photochem Photobiol 51:67–76

    Article  CAS  PubMed  Google Scholar 

  44. Servais H, Van Der Smissen P, Thirion G, Van Der Essen G, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP (2005) Gentamicin-induced apoptosis in LLC-PK1 cells: involvement of lysosomes and mitochondria. Toxicol Appl Pharmacol 206:321–333

    Article  CAS  PubMed  Google Scholar 

  45. Zareba M, Raciti MW, Henry MM, Sarna T, Burke JM (2006) Oxidative stress in ARPE-19 cultures: do melanosomes confer cytoprotection? Free Radic Biol 40(1):87–100

    Article  CAS  Google Scholar 

  46. Yoon J, Kim KJ, Choi YW, Shin HS, Kim YH, Min J (2010) The dependence of enhanced lysosomal activity on the cellular aging of bovine aortic endothelial cells. Mol Cell Biochem 340:175–178

    Article  CAS  PubMed  Google Scholar 

  47. Arsham AM, Neufeld TP (2009) A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS One 4:e6068

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96

    Article  CAS  PubMed  Google Scholar 

  49. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guicciardi ME, Bronk SF, Werneburg NW, Yin XM, Gores GJ (2005) Bid is upstream of lysosome-mediated caspase 2 activation in tumor necrosis factor alpha-induced hepatocyte apoptosis. Gastroenterology 129:269–284

    Article  CAS  PubMed  Google Scholar 

  52. Billen LP, Shamas-Din A, Andrews DW (2009) Bid: a Bax-like BH3 protein. Oncogene 27(Suppl 1):93–104

    Google Scholar 

  53. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577

    Article  CAS  PubMed  Google Scholar 

  54. Howitz KT, Sinclair DA (2008) Xenohormesis: sensing the chemical cues of other species. Cell 133:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Inoue Y, Shiraishi A, Hada T, Hirose K, Hamashima H, Shimada J (2004) The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 237:325–331

    CAS  PubMed  Google Scholar 

  56. Teh OK, Hofius D (2014) Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J Exp Bot 65:1297–1312

    Article  CAS  PubMed  Google Scholar 

  57. Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9:e1003287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abramovitch RB, Kim Y-J, Chen S, Dickman MB, Martin GB (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J 22:60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Vleesschauwer D, Gheysen G, Höfte M (2013) Hormone defense networking in rice: tales from a different world. Trends Plant Sci 18:555–565

    Article  PubMed  Google Scholar 

  60. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  61. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  62. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

FV wants to express his gratitude to Maria Langhieri for supporting cancer research in memory of her mother Iliana Tescaroli.

Authors’ contribution

FV conceived the research. AR performed the experiments. Both authors contributed to concept design, analyzed data, discussed results, wrote and approved the final manuscript.

Funding

This work was supported by funding from Italian Association for Cancer Research (AIRC, Milan, Italy)/Cariverona Foundation (Verona, Italy). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Vinante.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigo, A., Vinante, F. The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes. Apoptosis 21, 917–927 (2016). https://doi.org/10.1007/s10495-016-1257-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1257-y

Keywords

Navigation