Skip to main content
Log in

Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala–S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334(6059):1086–1090

    Article  CAS  PubMed  Google Scholar 

  2. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  3. Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    Article  CAS  PubMed  Google Scholar 

  5. Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40(1):14–21

    Article  CAS  PubMed  Google Scholar 

  6. Harding HP et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Article  CAS  PubMed  Google Scholar 

  7. Lange PS et al (2008) ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med 205(5):1227–1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102

    CAS  PubMed  Google Scholar 

  9. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhou AX, Tabas I (2013) The UPR in atherosclerosis. Semin Immunopathol 35(3):321–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Thorp EB (2011) Methods and models for monitoring UPR-associated macrophage death during advanced atherosclerosis. Methods Enzymol 489:277–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Verfaillie T, Garg AD, Agostinis P (2013) Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett 332(2):249–264

    Article  CAS  PubMed  Google Scholar 

  13. Forde JE, Dale TC (2007) Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci 64(15):1930–1944

    Article  CAS  PubMed  Google Scholar 

  14. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102

    Article  CAS  PubMed  Google Scholar 

  15. Pap M, Cooper GM (2002) Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol Cell Biol 22(2):578–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Boyle WJ et al (1991) Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64(3):573–584

    Article  CAS  PubMed  Google Scholar 

  17. Beals CR et al (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275(5308):1930–1934

    Article  CAS  PubMed  Google Scholar 

  18. Neal JW, Clipstone NA (2001) Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. J Biol Chem 276(5):3666–3673

    Article  CAS  PubMed  Google Scholar 

  19. Chu B et al (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271(48):30847–30857

    Article  CAS  PubMed  Google Scholar 

  20. Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78(6):1219–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tullai JW et al (2007) Glycogen synthase kinase-3 represses cyclic AMP response element-binding protein (CREB)-targeted immediate early genes in quiescent cells. J Biol Chem 282(13):9482–9491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116(Pt 7):1175–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79(4):173–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pap M, Cooper GM (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273(32):19929–19932

    Article  CAS  PubMed  Google Scholar 

  25. Watcharasit P et al (2002) Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci USA 99(12):7951–7955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Loberg RD, Vesely E, Brosius FC III (2002) Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J Biol Chem 277(44):41667–41673

    Article  CAS  PubMed  Google Scholar 

  27. Song L, De Sarno P, Jope RS (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277(47):44701–44708

    Article  CAS  PubMed  Google Scholar 

  28. Kotla S et al (2013) The transcription factor CREB enhances interleukin-17A production and inflammation in a mouse model of atherosclerosis. Sci Signal 6(293):ra83

    Article  PubMed  Google Scholar 

  29. Schauer IE et al (2010) CREB downregulation in vascular disease: a common response to cardiovascular risk. Arterioscler Thromb Vasc Biol 30(4):733–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2(8):599–609

    Article  CAS  PubMed  Google Scholar 

  31. Fiol CJ et al (1994) A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J Biol Chem 269(51):32187–32193

    CAS  PubMed  Google Scholar 

  32. Bullock BP, Habener JF (1998) Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge. Biochemistry 37(11):3795–3809

    Article  CAS  PubMed  Google Scholar 

  33. Scorrano L et al (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300(5616):135–139

    Article  CAS  PubMed  Google Scholar 

  34. Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zong WX et al (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162(1):59–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hetz C et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312(5773):572–576

    Article  CAS  PubMed  Google Scholar 

  37. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  38. Ow YP et al (2008) Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9(7):532–542

    Article  CAS  PubMed  Google Scholar 

  39. Copeland NG, Cooper GM (1979) Transfection by exogenous and endogenous murine retrovirus DNAs. Cell 16(2):347–356

    Article  CAS  PubMed  Google Scholar 

  40. Balogh A et al (2011) A simple fluorescent labeling technique to study virus adsorption in Newcastle disease virus infected cells. Enzym Microb Technol 49(3):255–259

    Article  CAS  Google Scholar 

  41. Jope RS (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24(9):441–443

    Article  CAS  PubMed  Google Scholar 

  42. Puthalakath H et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129(7):1337–1349

    Article  CAS  PubMed  Google Scholar 

  43. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13(8):1378–1386

    Article  CAS  PubMed  Google Scholar 

  44. Hübner A et al (2008) Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol Cell 30(4):415–425

    Article  PubMed Central  PubMed  Google Scholar 

  45. Echeverry N et al (2013) Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ 20(6):785–799

    Article  CAS  PubMed  Google Scholar 

  46. Puthalakath H et al (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3(3):287–296

    Article  CAS  PubMed  Google Scholar 

  47. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65(4):391–426

    Article  CAS  PubMed  Google Scholar 

  48. Rudolph D et al (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci USA 95(8):4481–4486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Jean D et al (1998) CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 273(38):24884–24890

    Article  CAS  PubMed  Google Scholar 

  50. Bonni A et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286(5443):1358–1362

    Article  CAS  PubMed  Google Scholar 

  51. Walton M et al (1999) CREB phosphorylation promotes nerve cell survival. J Neurochem 73(5):1836–1842

    CAS  PubMed  Google Scholar 

  52. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424–2428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hiroi T et al (2005) Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Pharmacogenomics J 5(2):102–111

    Article  CAS  PubMed  Google Scholar 

  54. Takadera T, Yoshikawa R, Ohyashiki T (2006) Thapsigargin-induced apoptosis was prevented by glycogen synthase kinase-3 inhibitors in PC12 cells. Neurosci Lett 408(2):124–128

    Article  CAS  PubMed  Google Scholar 

  55. Takadera T et al (2007) Caspase-dependent apoptosis induced by thapsigargin was prevented by glycogen synthase kinase-3 inhibitors in cultured rat cortical neurons. Neurochem Res 32(8):1336–1342

    Article  CAS  PubMed  Google Scholar 

  56. Faundez V, Horng JT, Kelly RB (1997) ADP ribosylation factor 1 is required for synaptic vesicle budding in PC12 cells. J Cell Biol 138(3):505–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Cleves AE, Clift-O’Grady L, Kelly RB (1997) ATP-dependent formation of free synaptic vesicles from PC12 membranes in vitro. Neurochem Res 22(8):933–940

    Article  CAS  PubMed  Google Scholar 

  58. Rosa P et al (1992) Brefeldin A inhibits the formation of constitutive secretory vesicles and immature secretory granules from the trans-Golgi network. Eur J Cell Biol 59(2):265–274

    CAS  PubMed  Google Scholar 

  59. Chen L, Gao X (2002) Neuronal apoptosis induced by endoplasmic reticulum stress. Neurochem Res 27(9):891–898

    Article  CAS  PubMed  Google Scholar 

  60. Elyaman W, Yardin C, Hugon J (2002) Involvement of glycogen synthase kinase-3beta and tau phosphorylation in neuronal Golgi disassembly. J Neurochem 81(4):870–880

    Article  CAS  PubMed  Google Scholar 

  61. Kogel D et al (2003) The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. J Neurochem 87(1):248–256

    Article  PubMed  Google Scholar 

  62. Sasaya H et al (2008) Nicotine suppresses tunicamycin-induced, but not thapsigargin-induced, expression of GRP78 during ER stress-mediated apoptosis in PC12 cells. J Biochem 144(2):251–257

    Article  CAS  PubMed  Google Scholar 

  63. Utsumi T et al (2004) Protective effect of nicotine on tunicamycin-induced apoptosis of PC12h cells. Neurosci Lett 370(2–3):244–247

    Article  CAS  PubMed  Google Scholar 

  64. Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59(4):675–680

    Article  CAS  PubMed  Google Scholar 

  65. Wang QM, Roach PJ, Fiol CJ (1994) Use of a synthetic peptide as a selective substrate for glycogen synthase kinase 3. Anal Biochem 220(2):397–402

    Article  CAS  PubMed  Google Scholar 

  66. Ozaki N, Chuang DM (1997) Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain. J Neurochem 69(6):2336–2344

    Article  CAS  PubMed  Google Scholar 

  67. Tullai JW, Graham JR, Cooper GM (2011) A GSK-3-mediated transcriptional network maintains repression of immediate early genes in quiescent cells. Cell Cycle 10(18):3072–3077

    Article  PubMed Central  PubMed  Google Scholar 

  68. Zhang X et al (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102(12):4459–4464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Impey S et al (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119(7):1041–1054

    Article  CAS  PubMed  Google Scholar 

  70. Conkright MD et al (2003) Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell 11(4):1101–1108

    Article  CAS  PubMed  Google Scholar 

  71. Lemaigre FP, Ace CI, Green MR (1993) The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators. Nucleic Acids Res 21(12):2907–2911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Seo HY et al (2010) Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases cAMP-stimulated hepatic gluconeogenesis via inhibition of CREB. Endocrinology 151(2):561–568

    Article  CAS  PubMed  Google Scholar 

  73. Wang Y et al (2009) The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460(7254):534–537

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Wilson BE, Mochon E, Boxer LM (1996) Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16(10):5546–5556

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Freeland K, Boxer LM, Latchman DS (2001) The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res 92(1–2):98–106

    Article  CAS  PubMed  Google Scholar 

  76. Pugazhenthi S et al (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761–10766

    Article  CAS  PubMed  Google Scholar 

  77. Inohara N et al (1998) Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 and Bcl-XL. J Biol Chem 273(15):8705–8710

    Google Scholar 

  78. Hsu SY et al (1997) Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci USA 94(23):12401–12406

    Google Scholar 

  79. Maurer U et al (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21(6):749–760

    Google Scholar 

  80. Stewart DP et al (2010) Ubiquitin-dependent degradation of antiapoptotic MCL-1. Mol Cell Biol 30(12):3099–3110

    Google Scholar 

  81. Harada H et al (2004) Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA 101(43):15313–15317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Huang DC, Strasser A (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103(6):839–842

    Google Scholar 

  83. Bouillet P, Strasser A (2002) BH3-only proteins - evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 115(Pt 8):1567–1574

    Google Scholar 

  84. O’Connor L et al (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17(2):384–395

    Article  PubMed Central  PubMed  Google Scholar 

  85. Biswas SC, Greene LA (2002) Nerve growth factor (NGF) down-regulates the Bcl-2 homology 3 (BH3) domain-only protein Bim and suppresses its proapoptotic activity by phosphorylation. J Biol Chem 277(51):49511–49516

    Article  CAS  PubMed  Google Scholar 

  86. Ley R et al (2004) Extracellular signal-regulated kinases 1/2 are serum-stimulated “Bim(EL) kinases” that bind to the BH3-only protein Bim(EL) causing its phosphorylation and turnover. J Biol Chem 279(10):8837–8847

    Article  CAS  PubMed  Google Scholar 

  87. Luciano F et al (2003) Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22(43):6785–6793

    Article  CAS  PubMed  Google Scholar 

  88. Marani M et al (2004) Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene 23(14):2431–2441

    Article  CAS  PubMed  Google Scholar 

  89. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100(5):2432–2437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Weston CR et al (2003) Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 22(9):1281–1293

    Article  CAS  PubMed  Google Scholar 

  91. Funakoshi Y et al (2002) Critical role of cAMP-response element-binding protein for angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem 277(21):18710–18717

    Article  CAS  PubMed  Google Scholar 

  92. Hall JL et al (2001) Upregulation of glucose metabolism during intimal lesion formation is coupled to the inhibition of vascular smooth muscle cell apoptosis. Role of GSK3beta. Diabetes 50(5):1171–1179

    Article  CAS  PubMed  Google Scholar 

  93. Reusch JE, Watson PA (2004) Loss of CREB regulation of vascular smooth muscle cell quiescence in diabetes. Rev Endocr Metab Disord 5(3):209–219

    Article  CAS  PubMed  Google Scholar 

  94. Tokunou T et al (2003) Apoptosis induced by inhibition of cyclic AMP response element-binding protein in vascular smooth muscle cells. Circulation 108(10):1246–1252

    Article  CAS  PubMed  Google Scholar 

  95. Zhang J et al (2006) Cyclic AMP inhibits p38 activation via CREB-induced dynein light chain. Mol Cell Biol 26(4):1223–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Zhang J et al (2008) Cyclic AMP inhibits JNK activation by CREB-mediated induction of c-FLIP(L) and MKP-1, thereby antagonizing UV-induced apoptosis. Cell Death Differ 15(10):1654–1662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Hungarian National Research Fund to József Szeberényi (OTKA T037528) and from Pécs University to Marianna Pap (PTE AOK KA 34039-13/2009). The purchase of the Olympus FV-1000 laser scanning confocal system was supported by Grant GVOP-3.2.1-2004-04-0172/3.0 to Pécs University. The authors would like to thank Gabriele N’diaye for the outstanding technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Pap.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, A., Németh, M., Koloszár, I. et al. Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types. Apoptosis 19, 1080–1098 (2014). https://doi.org/10.1007/s10495-014-0986-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0986-z

Keywords

Navigation