Skip to main content
Log in

Isofraxidin, a potent reactive oxygen species (ROS) scavenger, protects human leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in p53-independent manner

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) leads to oxidizing events such as excessive reactive oxygen species (ROS) in the exposed cells, resulting in further oxidative damage to lipids, proteins and DNA. To screen the potential radio-protective drug, the intracellular ROS was measured in irradiated U937 cells pretreated with 80 candidate traditional herbal medicine, respectively. Isofraxidin (IF) was one possible radio-protector in these 80 drugs. This study investigated the radio-protective role of IF, a Coumarin compound, in human leukemia cell lines, for the first time. Results indicate that IF protects against IR-induced apoptosis in U937 cells in the time- and concentration- dependent manner. IF decreases IR-induced intracellular ROS generation, especially hydroxyl radicals formation, inhibits IR-induced mitochondrial membrane potential loss and reduces IR-induced high intracellular Ca2+ levels regardless of ER stress. IF down-regulates the expression of caspase-3, phospho-JNK, phospho-p38 and activates Bax in mitochondria. IF inhibits cytochrome c release from mitochondria to cytosol. IF also moderates IR-induced Fas externalization and caspase-8 activation. IF also exhibits significant protection against IR-induced cell death in other leukemia cell lines such as Molt-4 cells and HL60 cells regardless of p53. Taken together, the data demonstrate that IF protects leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in a p53-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

IF:

Isofraxidin

IR:

Ionizing radiation

DMSO:

Dimethyl sulfoxide

MMP:

Mitochondrial membrane potential

TMRM:

Tetramethylrhodamine methyl ester

PI:

Propidium iodide

FITC:

Fluorescein isothiocyanate

HPF:

Hydroxyphenyl fluorescein

APF:

Aminophenyl fluorescein

HE:

Hydroethidine

DCFH:

Dichlorofluorescein diacetate

DAF-2 DA:

Diaminofluorescein-2 diacetate

pNA:

P-nitroanilide

IP3:

Inositol 1,4,5-trisphosphate

References

  1. Ding M, Lu Y, Bowman L, Huang C, Leonard S, Wang L, Vallyathan V et al (2004) Inhibition of AP-1 and neoplastic transformation by fresh apple peel extract. J Biol Chem 279:10670–10676

    Article  PubMed  CAS  Google Scholar 

  2. Shi J, Cheng C, Zhao H, Jing J, Gong N, Lu W (2013) In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex. Int J Biol Macromol 60:341–346

    Article  PubMed  CAS  Google Scholar 

  3. González N, Ribeiro D, Fernandes E, Nogueira DR, Conde E, Moure A et al (2013) Potential use of Cytisus scoparius extracts in topical applications for skin protection against oxidative damage. J Photochem Photobiol B 125:83–89

    Article  PubMed  CAS  Google Scholar 

  4. Ahmed K, Furusawa Y, Tabuchi Y, Emam HF, Piao JL, Hassan MA et al (2012) Chemical inducers of heat shock proteins derived from medicinal plants and cytoprotective genes response. Int J Hyperth 28:1–8

    Article  CAS  Google Scholar 

  5. Yamazaki T, Tokiwa T (2010) Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits matrix metalloproteinase-7 expression and cell invasion of human hepatoma cells. Biol Pharm Bull 33:1716–1722

    Article  PubMed  CAS  Google Scholar 

  6. Niu X, Xing W, Li W, Fan T, Hu H, Li Y (2012) Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway. Int Immunopharmacol 14:164–171

    Article  PubMed  CAS  Google Scholar 

  7. Khan S, Riaz N, Afza N, Malik A, Aziz-ur-Rehman, Iqbal L et al (2009) Antioxidant constituents from Cotoneaster racemiflora. J Asian Nat Prod Res 11:44–48

    Article  PubMed  CAS  Google Scholar 

  8. Huang HY, Ko HH, Jin YJ, Yang SZ, Shih YA, Chen IS (2012) Dihydrochalcone glucosides and antioxidant activity from the roots of Anneslea fragrans var. lanceolata. Phytochemistry 78:120–125

    Article  PubMed  CAS  Google Scholar 

  9. Van-Heerde WL, de Groot PG, Reutelingsperger CP (1995) The complexity of the phospholipid binding protein Annexin V. Thromb Haemost 73:172–179

    PubMed  CAS  Google Scholar 

  10. Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    PubMed  CAS  Google Scholar 

  11. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175

    Article  PubMed  Google Scholar 

  12. Royall JA, Ischiropoulos H (1993) Evaluation of 20, 70-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355

    Article  PubMed  CAS  Google Scholar 

  13. Gorman A, McGowan A, Cotter TG (1997) Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Lett 404:27–33

    Article  PubMed  CAS  Google Scholar 

  14. Datta R, Kojima H, Yoshida K, Kufe D (1997) Caspase-3-mediated cleavage of protein kinase C θ in induction of apoptosis. J Biol Chem 272:20317–20320

    Article  PubMed  CAS  Google Scholar 

  15. Cui ZG, Kondo T, Matsumoto H (2006) Enhancement of apoptosis by nitric oxide released from alpha-phenyl-tert-butyl nitrone under hyperthermic conditions. J Cell Physiol 206:468–476

    Article  PubMed  CAS  Google Scholar 

  16. Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327:48–60

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276:11615–11623

    Article  PubMed  CAS  Google Scholar 

  18. Narvaez CJ, Welsh J (2001) Role of mitochondria and caspases in vitamin D-mediated apoptosis of MCF-7 breast cancer cells. J Biol Chem 276:9101–9107

    Article  PubMed  CAS  Google Scholar 

  19. Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466:6–10

    Article  PubMed  CAS  Google Scholar 

  20. Lu TH, Hsieh SY, Yen CC, Wu HC, Chen KL, Hung DZ et al (2011) Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury. Toxicol Lett 204:71–80

    Article  PubMed  CAS  Google Scholar 

  21. Zhao S, Xiong Z, Mao X, Meng D, Lei Q, Li Y et al (2013) Atmospheric pressure room temperature plasma jets facilitate oxidative and nitrative stress and lead to endoplasmic reticulum stress dependent apoptosis in HepG2 cells. PLoS ONE 8:e73665

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Emam H, Zhao QL, Furusawa Y, Refaat A, Ahmed K, Kadowaki M et al (2012) Apoptotic cell death by the novel natural compound, cinobufotalin. Chem Biol Interact 199:154–160

    Article  PubMed  CAS  Google Scholar 

  23. Li J, Lee AS (2006) Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 6:45–54

    Article  PubMed  CAS  Google Scholar 

  24. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15:481–490

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  26. Seo YR, Fishel ML, Amundson S, Kelley MR, Smith ML (2002) Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 21:731–737

    Article  PubMed  CAS  Google Scholar 

  27. Schwartz D, Almog N, Peled A, Goldfinger N, Rotter V (1997) Role of wild type p53 in the G2 phase: regulation of the gamma-irradiation-induced delay and DNA repair. Oncogene 15:2597–2607

    Article  PubMed  CAS  Google Scholar 

  28. Hayashi T, Hayashi I, Shinohara T, Morishita Y, Nagamura H, Kusunoki Y et al (2004) Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH. Mutat Res 556:83–91

    Article  PubMed  CAS  Google Scholar 

  29. Narayanan PK, Goodwin EH, Lehnert BE (1997) Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57:3963–3971

    PubMed  CAS  Google Scholar 

  30. Yu Y, Fan SM, Song JK, Tashiro S, Onodera S, Ikejima T (2012) Hydroxyl radical (·OH) played a pivotal role in oridonin-induced apoptosis and autophagy in human epidermoid carcinoma A431 cells. Biol Pharm Bull 35:2148–2159

    Article  PubMed  CAS  Google Scholar 

  31. Taupin P (2010) A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 10:16–21

    Article  PubMed  CAS  Google Scholar 

  32. Corbiere C, Liagre B, Terro F, Beneytout JL (2004) Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res 14:188–196

    Article  PubMed  CAS  Google Scholar 

  33. Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717

    Article  PubMed  CAS  Google Scholar 

  34. Gottlieb RA (2000) Mitochondria: execution central. FEBS Lett 482:6–12

    Article  PubMed  CAS  Google Scholar 

  35. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T et al (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    Article  PubMed  CAS  Google Scholar 

  36. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extract: requirements for dATP and cytochrome C. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  37. Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T et al (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128

    Article  PubMed  CAS  Google Scholar 

  38. Strasser A, Newton K (1999) FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int J Biochem Cell Biol 31:533–537

    Article  PubMed  CAS  Google Scholar 

  39. Yin XM (2000) Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 10:161–167

    Article  PubMed  CAS  Google Scholar 

  40. Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281:21256–21265

    Article  PubMed  CAS  Google Scholar 

  41. Verheij M, Ruiter GA, Zerp SF, Van Blitterswijk WJ, Fuks Z, Haimovitz-Friedman A et al (1998) The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis. Radiother Oncol 47:225–232

    Article  PubMed  CAS  Google Scholar 

  42. Chen YR, Tan TH (2000) The c-Jun N-terminal kinase pathway and apoptotic signaling. Int J Oncol 16:651–662

    PubMed  CAS  Google Scholar 

  43. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    Article  PubMed  CAS  Google Scholar 

  44. Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG et al (2002) Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 277:20301–20308

    Article  PubMed  CAS  Google Scholar 

  45. Pinton P, Ferrari D, Magalhães P, Schulze-Osthoff K, Di Virgilio F, Pozzan T et al (2000) Reduced loading of intracellular Ca(2 +) stores and downregulation of capacitative Ca(2 +) influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    Article  PubMed  CAS  Google Scholar 

  47. Choi AY, Choi JH, Lee JY, Yoon KS, Choe W, Ha J et al (2010) Apigenin protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis. Neurochem Int 57:143–152

    Article  PubMed  CAS  Google Scholar 

  48. Huang SM, Cheung CW, Chang CS, Tang CH, Liu JF, Lin YH et al (2011) Phloroglucinol derivative MCPP induces cell apoptosis in human colon cancer. J Cell Biochem 112:643–652

    Article  PubMed  CAS  Google Scholar 

  49. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  50. Miyazaki Y, Kaikita K, Endo M, Horio E, Miura M, Tsujita K et al (2011) C/EBP homolo-gous protein deficiency attenuates myocardial reperfusion injury by inhibitingmyocardial apoptosis and inflammation. Arterioscler Thromb Vasc Biol 31:1124–1132

    Article  PubMed  CAS  Google Scholar 

  51. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Shibata M, Hattori H, Sasaki T, Gotoh J, Hamada J, Fukuuchi Y (2003) Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Neuroscience 118:491–499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Grant-in-Aid for the Cooperative Research Project from Joint Usage/Research Center (Joint Usage/Research Center for Science-Based Natural Medicine) Institute of Natural Medicine. University of Toyama in 2013; in part by the International Exchange Fund of the Sugitani campus (Medical and Pharmacy) (A) in 2012, University of Toyama, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Li Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Zhao, QL., Wu, LH. et al. Isofraxidin, a potent reactive oxygen species (ROS) scavenger, protects human leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in p53-independent manner. Apoptosis 19, 1043–1053 (2014). https://doi.org/10.1007/s10495-014-0984-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0984-1

Keywords

Navigation