Skip to main content

Advertisement

Log in

ERp29 deficiency affects sensitivity to apoptosis via impairment of the ATF6–CHOP pathway of stress response

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum protein 29 (ERp29) belongs to the redox-inactive PDI-Dβ-subfamily of PDI-proteins. ERp29 is expressed in all mammalian tissues examined. Especially high levels of expression were observed in secretory tissues and in some tumors. However, the biological role of ERp29 remains unclear. In the present study we show, by using thyrocytes and primary dermal fibroblasts from adult ERp29−/− mice, that ERp29 deficiency affects the activation of the ATF6–CHOP-branch of unfolded protein response (UPR) without influencing the function of other UPR branches, like the ATF4-eIF2α-XBP1 signaling pathway. As a result of impaired ATF6 activation, dermal fibroblasts and adult thyrocytes from ERp29−/− mice display significantly lower apoptosis sensitivities when treated with tunicamycin and hydrogen peroxide. However, in contrast to previous reports, we could demonstrate that ERp29 deficiency does not alter thyroglobulin expression levels. Therefore, our study suggests that ERp29 acts as an escort factor for ATF6 and promotes its transport from ER to Golgi apparatus under ER stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ERp29:

Endoplasmic reticulum protein 29

PDI:

Protein disulfide isomerase

UPR:

Unfolded protein response

ER:

Endoplasmic reticulum

ERAD:

ER associated degradation

ROS:

Reactive oxygen species

SD:

Standard deviation

Tg:

Thyroglobulin

Tu:

Tunicamycin

References

  1. Ferrari DM, Van Nguyen P, Kratzin HD, Soling HD (1998) ERp28, a human endoplasmic reticulum luenal protein, is a member of the protein disulfide isomerase family but lacks a CXXC thioredoxin-box motif. Eur J Biochem 255(3):570–579

    Article  PubMed  CAS  Google Scholar 

  2. Barak NN, Neumann P, Sevvana M, Schutkowski M, Naumann K, Malesević M, Reichardt H, Fischer G, Stubbs MT, Ferrari DM (2009) Crystal structure and functional analysis of the protein disulfide isomerase-related protein ERp29. J Mol Biol 385(5):1630–1642. doi:10.1016/j.jmb.2008.11.052

    Article  PubMed  CAS  Google Scholar 

  3. Mkrtchian S, Sandalova T (2006) ERp29, an unusual redox-inactive member of the thioredoxin family. Antioxid Redox Signal 8:325–337

    Article  PubMed  CAS  Google Scholar 

  4. Bambang IF, Xu S, Zhou J, Salto-Tellez M, Sethi SK, Zhang D (2009) Overexpression of endoplasmic reticulum protein 29 regulates mesenchymal–epithelial transition and suppresses xenograft tumor growth of invasive breast cancer cells. Lab Invest 89:1229–1242

    Article  PubMed  CAS  Google Scholar 

  5. Mkrtchian S, Baryshev M, Sargsyan E, Chatzistamou I, Volakaki AA, Chaviaras N et al (2008) ERp29, an endoplasmic reticulum secretion factor is involved in the growth of breast tumor xenografts. Mol Carcinog 47(11):886–892. doi:10.1002/mc.20444

    Article  PubMed  CAS  Google Scholar 

  6. Mkrtchian S, Fang C, Hellman U, Ingelman-Sundberg M (1998) A stress-inducible rat liver endoplasmic reticulum protein, ERp29. Eur J Biochem 251:304–313

    Article  PubMed  CAS  Google Scholar 

  7. Sargsyan E, Baryshev M, Szekely L, Sharipo A, Mkrtchian S (2002) Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex. J Biol Chem 277:17009–17015. doi:10.1074/jbc.M200539200

    Article  PubMed  CAS  Google Scholar 

  8. Baryshev M, Sargsyan E, Mkrtchian S (2006) ERp29 is an essential endoplasmic reticulum factor regulating secretion of thyroglobulin. Biochem Biophys Res Commun 340:617–624

    Article  PubMed  CAS  Google Scholar 

  9. Das S, Smith TD, Das Sarma J, Ritzenthaler JD, Maza J, Kaplan BE, Cunningham LA, Suaud L, Hubbard MJ, Rubenstein RC, Koval M (2009) ERp29 restricts Connexin43 oligomerization in the endoplasmic reticulum. Mol Biol Cell 20:2593–2604. doi:10.1091/mbc.E08-07-0790

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Kuznetsov G, Chen LB, Nigam SK (1994) Several endoplasmic reticulum stress proteins, including Erp72, interact with thyroglobulin during its maturation. J Biol Chem 269:22990–22995

    PubMed  CAS  Google Scholar 

  11. Kwon OY, Park S, Lee W, You K-H, Kim H, Shong M (2000) TSH regulates a gene expression encoding ERp29, an endoplasmic reticulum stress protein, in the thyrocytes of FRTL-5 cells. FEBS Lett 475:27–30

    Article  PubMed  CAS  Google Scholar 

  12. Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63

    Article  PubMed  CAS  Google Scholar 

  13. Sevier CS, Kaiser CA (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556

    Article  PubMed  CAS  Google Scholar 

  14. Zhang B, Wang M, Yang Y, Wang Y, Pang X, Su Y, Wang J, Ai G, Zou Z (2008) ERp29 is a radiation responsive gene in IEC-6 cell. J Radiat Res 49:587–596

    Article  PubMed  CAS  Google Scholar 

  15. Dukes AA, Van Laar VS, Cascio M, Hastings TG (2008) Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. J Neurochem 106:333–346. doi:10.1111/j.1471-4159.2008.05392.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Hung YC, Wang PW, Pan TL, Bazylak G, Leu YL (2009) Proteomic screening of antioxidant effects exhibited by radix Salvia miltiorrhiza aqueous extract in cultured rat aortic smooth muscle cells under homocysteine treatment. J Ethnopharmacol 124:463–474. doi:10.1016/j.jep.2009.05.020

    Article  PubMed  CAS  Google Scholar 

  17. Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem 11:341–346

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Verfaillie T, Salazar M, Velasco G, Agostinis P (2010) Linking ER stress to Autophagy: potential implications for cancer therapy. Int J Cell Biol. doi:10.1155/2010/930509

    PubMed Central  PubMed  Google Scholar 

  19. Liu CY, Wong HN, Schauerte JA, Kaufman RJ (2002) The protein kinase/endoribonuclease IRE1 that signals the unfolded protein response has a luminal N-terminal ligand independent dimerization domain. J Biol Chem 277:18346–18356

    Article  PubMed  CAS  Google Scholar 

  20. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  PubMed  CAS  Google Scholar 

  21. Lee AH, Chu GC, Iwakoshi NN, Glimcher LH (2005) XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J 24:4368–4380

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 6:53–66

    Article  CAS  Google Scholar 

  23. DuRose JB, Scheuner D, Kaufman RJ, Rothblum LI, Niwa M (2009) Phosphorylation of eucaryotic translation initiation factor 2α coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol Cell Biol 15:4295–4307. doi:10.1128/MCB.00260-09

    Article  CAS  Google Scholar 

  24. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membranebound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364

    Article  PubMed  CAS  Google Scholar 

  26. Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277:13045–13052

    Article  PubMed  CAS  Google Scholar 

  27. Okada T, Haze K, Nadanaka S, Yoshida H, Seidah NG, Hirano Y, Sato R, Negishi M, Mori K (2003) A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J Biol Chem 278:31024–31032

    Article  PubMed  CAS  Google Scholar 

  28. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  30. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294

    Article  PubMed  CAS  Google Scholar 

  31. Harding H, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) PERK is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    Article  PubMed  CAS  Google Scholar 

  32. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Zhang D, Putti TC (2010) Over-expression of ERp29 attenuates doxorubicin-induced cell apoptosis through the upregulation of Hsp27 in breast cancer cells. Exp Cell Res 316:3522–3531. doi:10.1016/j.yexcr.2010.08.014

    Article  PubMed  CAS  Google Scholar 

  34. Bambang IF, Lu D, Li H, Chiu LL, Lau QC, Koay E, Zhang D (2009) Cytokeratin 19 regulates endoplasmic reticulum stress and inhibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells. Exp Cell Res 315:1964–1974. doi:10.1016/j.yexcr.2009.02.017

    Article  PubMed  CAS  Google Scholar 

  35. Gao D, Bambang IF, Putti TC, Lee YK, Richardson DR, Zhang D (2011) ERp29 induces breast cancer cell growth arrest and survival through modulation of activation of p38 and upregulation of ER stress protein p58(IPK). Lab Invest 92:200–213. doi:10.1038/labinvest.2011.163

    Article  PubMed  CAS  Google Scholar 

  36. Guo Ch (2003) Generation of endoplasmic reticulum protein 28 (ERp28) knock out mice, and structural and functional analysis of its Drosophila Homologue, Wind. Dissertation, Georg-August University, Göttingen

  37. Lichti U, Anders J, Yuspa SH (2008) Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 3:799–810. doi:10.1038/nprot.2008.50

    Article  PubMed  CAS  Google Scholar 

  38. Jeker LT, Hejazi M, Burek CL, Rose NR, Caturegli P (1999) Mouse thyroid culture. Biochem Biophys Res Commun 257:511–515

    Article  PubMed  CAS  Google Scholar 

  39. Björkman U, Ekholm R (1982) Effect of tunicamycin on thyroglobulin secretion. Eur J Biochem 125:585–591

    Article  PubMed  Google Scholar 

  40. Eggo MC, Burrow GN (1983) Glycosylation of thyroglobulin—its role in secretion, iodination, and stability. Endocrinology 113:1655–1663

    Article  PubMed  CAS  Google Scholar 

  41. Kim PS, Bole D, Arvan P (1992) Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP. J Cell Biol 118:541–549

    Article  PubMed  CAS  Google Scholar 

  42. Kuznetsov G, Chen LB, Nigam SK (1997) Multiple molecular chaperones complex with misfolded large oligomeric glucoproteins in the endoplasmic reticulum. J Biol Chem 272:3057–3063. doi:10.1074/jbc.272.5.3057

    Article  PubMed  CAS  Google Scholar 

  43. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  44. Zamarbide M, Martinez-Pinilla E, Ricobaraza A, Aragon T, Franco R, Perez-Mediavilla A (2013) Phenyl acyl acids attenuate the unfolded protein response in tunicamycin-treated neuroblastoma cells. PLoS One 8:1–7

    Article  CAS  Google Scholar 

  45. Van Gansen P, Van Lerberghe N (1988) Potential and limitations of cultivated fibroblasts in the study of senescence in animals. A review on the murine skin fibroblasts system. Arch Gerantol Geriatr 7:31–74

    Article  Google Scholar 

  46. Jones GE, Wise C (1997) Establishment, maintenance, and cloning of human dermal fibroblasts. Methods in molecular biology. Methods Mol Biol 75:13–24

    PubMed  CAS  Google Scholar 

  47. Kim PS, Arvan P (1991) Folding and assembly of newly synthesized thyroglobulin occurs in a pre-Golgi compartment. J Biol Chem 266:12412–12418

    PubMed  CAS  Google Scholar 

  48. Wegrowski Y, Perreau C, Martiny L, Haye B, Maquart FX, Bellon G (1999) Transforming growth factor beta-1 up-regulates clusterin synthesis in thyroid epithelial cells. Exp Cell Res 247:475–483

    Article  PubMed  CAS  Google Scholar 

  49. Park S, Hwang I, Shong M, Kwon OY (2003) Identification of genes in thyrocytes regulated by unfolded protein response by using disulfide bond reducing agent of dithiothreitol. J Endocrinol Invest 26:132–137

    Article  PubMed  CAS  Google Scholar 

  50. Lorenz S, Eszlinger M, Paschke R, Aust G, Weick M, Führer D, Krohn K (2010) Calcium signaling of thyrocytes is modulated by TSH through calcium binding protein expression. Biochim Biophys Acta 1803:352–360. doi:10.1016/j.bbamcr.2010.01.007

    Article  PubMed  CAS  Google Scholar 

  51. Malthièry Y, Marriq C, Bergé-Lefranc JL, Franc JL, Henry M, Lejeune PJ, Ruf J, Lissitzky S (1989) Thyroglobulin structure and function: recent advances. Biochemie 71:195–209

    Article  Google Scholar 

  52. Kim PS, Arvan P (1995) Calnexin and BiP act as sequential chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol 128:29–38

    Article  PubMed  CAS  Google Scholar 

  53. Christis C, Fullaondo A, Schildknegt D, Mkrtchian S, Heck A, Braakman I (2010) Regulates increase in folding capacity prevents unfolded protein stress in the ER. J Cell Sci 123:787–794. doi:10.1242/jcs.041111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Sargsyan E, Baryshev M, Mkrtchian S (2004) The physiological unfolded protein response in the thyroid epithelial cells. Biochem Biophys Res Commun. 322:570–576

    Article  PubMed  CAS  Google Scholar 

  55. Garrido JL, Maruo S, Takada K, Rosendorff A (2009) EBNA3C interacts with GADD34 and counteracts the unfolded protein response. Virol J 6:231. doi:10.1186/1743-422X-6-231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Sadighi Akha AA, Raden D, Kaufman RJ (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic m RNAs and proteins. PLoS Biol. doi:10.1371/journal.pbio.0040374

    PubMed Central  PubMed  Google Scholar 

  57. Kincaid MM, Cooper AA (2007) ERADicate ER stress or die trying. Antioxid Redox Signal 9:2373–2387

    Article  PubMed  CAS  Google Scholar 

  58. Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J Cell Biol 153:1011–1021

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I, Ron D, Katze MG (2002) Control of PERK eIF2α kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. PNAS 99:15920–15925. doi:10.1073/pnas.252341799

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  PubMed  CAS  Google Scholar 

  61. Farmaki E, Mkrtchian S, Papazian I, Papavassiliou AG, Kiaris H (2011) ERp29 regulates response to doxorubicin by a PERK-mediated mechanism. Biochim Biophys Acta 1813(6):1165–1171. doi:10.1016/j.bbamcr.2011.03.003

    Article  PubMed  CAS  Google Scholar 

  62. Long H, Han H, Yang B, Wang Z (2003) Opposite cell density-dependence between spontaneous and oxidative stress-induced apoptosis in mouse fibroblast L-cells. Cell Physiol Biochem 13:401–414. doi:10.1159/000075128

    Article  PubMed  CAS  Google Scholar 

  63. Sen P, Mukherjee S, Bhaumika G, Dasb P, Ganguly S, Choudhury N, Raha S (2003) Enhancement of catalase activity by repetitive low-grade H2O2 exposures protects fibroblasts from subsequent stress-induced apoptosis. Mutat Res 529:87–94

    Article  PubMed  CAS  Google Scholar 

  64. Akaishi T, Nakazawa K, Sato K, Saito H, Ohno Y, Ito Y (2004) Hydrogen peroxide modulates whole cell Ca2+ currents through L-type channels in cultured rat dentate granule cells. Neurosci Lett 356:25–28. doi:10.1016/j.bbrc.2013.08.087

    Article  PubMed  CAS  Google Scholar 

  65. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293

    Article  PubMed  CAS  Google Scholar 

  66. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes mechanisms and consequences. J Cell Biol 164:341–346. doi:10.1083/jcb.200311055

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Shnyder SD, Mangum JE, Hubbard MJ (2008) Triplex profiling of functionally distinct chaperones (ERp29/PDI/BiP) reveals marked heterogeneity of the endoplasmic reticulum proteome in cancer. J Proteome Res 7:3364–3372

    Article  PubMed  CAS  Google Scholar 

  68. Sargsyan E, Baryshev M, Backlund M, Sharipo A, Mkrtchian S (2002) Genomic organization and promoter characterization of the gene encoding a putative endoplasmic reticulum chaperone, ERp29. Gene 285:127–139

    Article  PubMed  CAS  Google Scholar 

  69. Ferrari DM, Söling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339:1–10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Mkrtchian S, Baryshev M, Matvijenko O, Sharipo A, Sandalova T, Schneider G, Ingelman-Sundberg M (1998) Oligomerization properties of ERp29, an endoplasmic reticulum stress protein. FEBS Lett 431:322–326

    Article  PubMed  CAS  Google Scholar 

  71. Kobayashi M, Habuchi K, Yoneda M, Habuchi O, Kimata K (1997) Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase. J Biol Chem 272:13980–13985

    Article  PubMed  CAS  Google Scholar 

  72. Sergeev P, Streit A, Heller A, Steinman-Zwicky M (2001) The Drosophila dorsoventral determinant PIPE contains ten copies of a variable domain homologous to mammalian heparan sulfate 2-sulfotransferase. Dev Dyn 220:122–132

    Article  PubMed  CAS  Google Scholar 

  73. Ma Q, Guo C, Barnewitz K, Sheldrick GM, Soling HD, Uson I, Ferrari DM (2003) Crystal structure and functional analysis of Drosophila Wind, a protein-disulfide isomerase-related protein. J Biol Chem 278:44600–44607

    Article  PubMed  CAS  Google Scholar 

  74. Barnewitz K, Guo C, Sevvana M, Ma Q, Sheldrick GM, Söling H-D, Ferrari DM (2004) Mapping of a substrate-binding site in the protein disulfide isomerase- related chaperone Wind based on protein function and crystal structure. J Biol Chem 279:39829–39837

    Article  PubMed  CAS  Google Scholar 

  75. Sato Y, Nadanaka S, Okada T, Okawa K, Mori K (2011) Lumenal domain of ATF6 alone is sufficient for sensing endoplasmic reticulum stress and subsequent transport to the Golgi apparatus. Cell Struct Funct 36:35–47. doi:10.1247/csf.10010

    Article  PubMed  CAS  Google Scholar 

  76. Nadanaka S, Yoshida H, Kano F, Murata M, Mori K (2004) Activation of mammalian unfolded protein response is compatible with the quality control system operating in the endoplasmic reticulum. Mol Biol Cell 15:2537–2548. doi:10.1091/mbc.E03-09-0693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Nadanaka S, Yoshida H, Mori K (2006) Reduction of disulfide bridges in the lumenal domain of ATF6 in response to glucose starvation. Cell Struct Funct 31:127–134. doi:10.1247/csf.06024

    Article  PubMed  CAS  Google Scholar 

  78. Nadanaka S, Okada T, Yoshida H, Mori K (2007) Role of disulfide bridges formed in the lumenal domain of ATF6 in sensing endoplasmic reticulum stress. Mol Cell Biol 27:1027–1043. doi:10.1128/MCB.00408-06

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Wright J, Birk J, Haataja L, Liu M, Ramming T, Weiss MA, Appenzeller-Herzog C, Arvan P (2013) Endoplasmic Reticulum Oxidoreductin-1α (Ero1α) Improves folding and secretion of mutant proinsulin and limits mutant proinsulin-induced endoplasmic reticulum stress. J Biol Chem 288:31010–31018. doi:10.1074/jbc.M113.510065

    Article  PubMed  CAS  Google Scholar 

  80. Rabeler R, Mittag J, Geffers L, Rüther U, Leitges M, Parlow AF, Visser TJ, Bauer K (2004) Generation of thyrotropin-releasing hormone receptor 1-deficient mice as an animal model of central hypothyroidism. Mol Endocrinol 18:1450–1460. doi:10.1210/me.2004-0017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all of the members of Max Planck Research Unit for Enzymology of Protein Folding (Halle/Saale, Germany) for helpful discussion, and in part for technical assistance. The present work was supported by grants from the Exzellenznetzwerk Biowissenschaften (Sachsen-Anhalt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Hirsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, I., Weiwad, M., Prell, E. et al. ERp29 deficiency affects sensitivity to apoptosis via impairment of the ATF6–CHOP pathway of stress response. Apoptosis 19, 801–815 (2014). https://doi.org/10.1007/s10495-013-0961-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0961-0

Keywords

Navigation