Skip to main content
Log in

Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, 18F labeled bis(zinc(II)-dipicolylamine) complex

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An 18F-labeled DPAZn2 complex (4-18F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), 18F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of 18F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2′-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[18F]-fluorobenzoate (18F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of 18F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of 18F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of 18F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that 18F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of 18F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    PubMed  CAS  Google Scholar 

  2. Corsten MF, Hofstra L, Narula J et al (2006) Counting heads in the war against cancer: defining the role of Annexin A5 imaging in cancer treatment and surveillance. Cancer Res 66:1255–1260

    Article  PubMed  CAS  Google Scholar 

  3. Lahorte CM, Vanderheyden JL, Steinmetz N et al (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med 31:887–919

    Article  CAS  Google Scholar 

  4. Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49:81S–95S

    Article  PubMed  CAS  Google Scholar 

  5. Grimberg H, Levin G, Shirvan A et al (2009) Monitoring of tumor response to chemotherapy in vivo by a novel small-molecule detector of apoptosis. Apoptosis 14:257–267

    Article  PubMed  CAS  Google Scholar 

  6. Reshef A, Shirvan A, Akselrod-Ballin A et al (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51:837–840

    Article  PubMed  CAS  Google Scholar 

  7. Niu G, Chen X (2010) Apoptosis imaging: beyond annexin V. J Nucl Med 51:1659–1662

    Article  PubMed  CAS  Google Scholar 

  8. Hanshaw RG, Lakshmi C, Lambert TN et al (2005) Fluorescent detection of apoptotic cells by using zinc coordination complexes with a selective affinity for membrane surfaces enriched with phosphatidylserine. ChemBioChem 6:2214–2220

    Article  PubMed  CAS  Google Scholar 

  9. Smith BA, Akers WJ, Leevy WM et al (2010) Optical imaging of mammary and prostate tumors in living animals using a synthetic near infrared zinc(II)-dipicolylamine probe for anionic cell surfaces. J Am Chem Soc 132:67–69

    Article  PubMed  CAS  Google Scholar 

  10. Leevy WM, Johnson JR, Lakshmi C et al (2006) Selective recognition of bacterial membranes by zinc(II)-coordination complexes. Chem Commun 1595–1597

  11. Leevy WM, Gammon ST, Jiang H et al (2006) Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J Am Chem Soc 128:16476–16477

    Article  PubMed  CAS  Google Scholar 

  12. Leevy WM, Gammon ST, Johnson JR et al (2008) Noninvasive optical imaging of Staphylococcus aureus bacterial infection in living mice using a bis-dipicolylamine-zinc(II) affinity group conjugated to a near-infrared fluorophore. Bioconjugate Chem 19:686–692

    Article  CAS  Google Scholar 

  13. White AG, Fu N, Leevy WM et al (2010) Optical imaging of bacterial infection in living mice using deep-red fluorescent squaraine rotaxane probes. Bioconjugate Chem 21:1297–1304

    Article  CAS  Google Scholar 

  14. Smith BA, Gammon ST, Xiao S et al (2011) In vivo optical imaging of acute cell death using a near-infrared fluorescent zinc-dipicolylamine probe. Mol Pharmaceutics 8:583–590

    Article  CAS  Google Scholar 

  15. Chen K, Yap L, Park R et al (2011) Evaluation of 64Cu-labeled dipicolylamine (DPA) as a small-molecule PET probe for in vivo imaging of phosphatidylserine exposure. J Nucl Med 52(Suppl 1):1502. http://jnumedmtg.snmjournals.org/cgi/content/meeting abstract/52/1_MeetingAbstracts/1502

  16. Wyffels L, Gray BD, Barber C et al (2011) Synthesis and preliminary evaluation of radiolabeled bis(zinc(II)-dipicolylamine) coordination complexes as cell death imaging agents. Bioorg Med Chem 19:3425–3433

    Article  PubMed  CAS  Google Scholar 

  17. Liu X, Cheng D, Gray BD et al (2012) Radiolabeled Zn-DPA as a potential infection imaging agent. Nucl Med Biol 39(5):709–714

    Article  PubMed  CAS  Google Scholar 

  18. Kimura E, Aoki S, Kikuta E et al (2003) A macrocyclic zinc(II) fluorophore as a detector of apoptosis. PNAS 100:3731–3736

    Article  PubMed  CAS  Google Scholar 

  19. Oltmanns D, Zitzmann-Kolbe S, Mueller A et al (2011) Zn(II)-Bis(Cyclen) complexes and the imaging of apoptosis/necrosis. Bioconjugate Chem 22:2611–2624

    Article  CAS  Google Scholar 

  20. Lakshmi C, Hanshaw RG, Smith BD (2004) Fluorophore-linked zinc(II)dipicolylamine coordination complexes as sensors for phosphatidylserine-containing membranes. Tetrahedron 60:11307–11315

    Article  CAS  Google Scholar 

  21. Guo XY, Wang HL, Jin YF et al (2011) Synthesis and radiolabelling of [18F]FEDPA as an imaging agent for apoptosis. J Nucl Radiochem 33(4):245–251. http://www.jnrc.org.cn/qikan/public/tjdjl.asp?wenjianming=1104-33-09.pdf

    Google Scholar 

  22. Tang G, Zeng W, Yu M et al (2008) Facile synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for protein labeling. J Label Compd Radiopharm 51:68–71

    Article  CAS  Google Scholar 

  23. Brindle KM (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8:94–107

    Article  PubMed  CAS  Google Scholar 

  24. Hanshaw RG, Smith BD (2005) New reagents for phosphatidylserine recognition and detection of apoptosis. Bioorg Med Chem 13:5035–5042

    Article  PubMed  CAS  Google Scholar 

  25. Koulov AV, Stucker KA, Lakshmi C et al (2003) Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell Death Differ 10(12):1357–1359

    Article  PubMed  CAS  Google Scholar 

  26. Fahrni CJ, O’Halloran TV (1999) Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J Am Chem Soc 121:11448–11458

    Article  CAS  Google Scholar 

  27. Nasir MS, Fahrni CJ, Suhy DA et al (1999) The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. J Biol Inorg Chem 4:775–783

    Article  PubMed  CAS  Google Scholar 

  28. Murakami Y, Takamatsu HJ, Taki M et al (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med 31:469–474

    Article  CAS  Google Scholar 

  29. Yagle KJ, Eary JF, Tait JF et al (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 6:658–666

    Google Scholar 

  30. Grierson JR, Yagle KJ, Eary JF et al (2004) Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjugate Chem 15:373–379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Zhong Pei for his technical support and Dr. Xiangsong Zhang for his useful assistance. This work was supported by the National Natural Science Foundation (No. 81101076, No. 30970856, No. 81201116), Postdoctoral Science Foundation of China (20110490964), Science and Technology Planning Project of Guangdong Province, China (2010B031600054), Science and Technology Planning Project of Guangzhou (2011J5200025) and The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. [2010]609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganghua Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6968 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Tang, X., Tang, G. et al. Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, 18F labeled bis(zinc(II)-dipicolylamine) complex. Apoptosis 18, 1017–1027 (2013). https://doi.org/10.1007/s10495-013-0852-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0852-4

Keywords

Navigation