Skip to main content
Log in

A possible cross-talk between autophagy and apoptosis in generating an immune response in melanoma

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Melanoma is the most aggressive form of skin cancer, responsible for the majority of skin cancer related deaths. Thus, the search for natural molecules which can effectively destroy tumors while promoting immune activation is essential for designing novel therapies against metastatic melanoma. Here, we report for the first time that a natural triterpenoid, Ganoderic acid DM (GA-DM), induces an orchestrated autophagic and apoptotic cell death, as well as enhanced immunological responses via increased HLA class II presentation in melanoma cells. Annexin V staining and flow cytometry showed that GA-DM treatment induced apoptosis of melanoma cells, which was supported by a detection of increased Bax proteins, co-localization and elevation of Apaf-1 and cytochrome c, and a subsequent cleavage of caspases 9 and 3. Furthermore, GA-DM treatment initiated a possible cross-talk between autophagy and apoptosis as evidenced by increased levels of Beclin-1 and LC3 proteins, and their timely interplay with apoptotic and/or anti-apoptotic molecules in melanoma cells. Despite GA-DM’s moderate cytotoxicity, viable cells expressed high levels of HLA class II proteins with improved antigen presentation and CD4+ T cell recognition. The antitumor efficacy of GA-DM was also investigated in vivo in murine B16 melanoma model, where GA-DM treatment slowed tumor formation with a significant reduction in tumor volume. Taken together, these findings demonstrate the potential of GA-DM as a natural chemo-immunotherapeutic capable of inducing a possible cross-talk between autophagy and apoptosis, as well as improved immune recognition for sustained melanoma tumor clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rigel DS, Russak J, Friedman R (2010) The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J Clin 60:301–316

    Article  PubMed  Google Scholar 

  2. Reed KB, Brewer JD, Lohse CM, Bringe KE, Pruitt CN, Gibson LE (2012) Increasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. Mayo Clin Proc 87:328–334

    Article  PubMed  Google Scholar 

  3. Blank CU, Hooijkaas AI, Haanen JB, Schumacher TN (2011) Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol Immunother 60:1359–1371

    Article  PubMed  Google Scholar 

  4. Boyle GM (2011) Therapy for metastatic melanoma: an overview and update. Expert Rev Anticancer Ther 11:725–737

    Article  PubMed  CAS  Google Scholar 

  5. Balch CM, Gershenwald JE, Soong SJ et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206

    Article  PubMed  Google Scholar 

  6. Bhatia S, Tykodi SS, Thompson JA (2009) Treatment of metastatic melanoma: an overview. Oncology (Williston Park) 23:488–496

    Google Scholar 

  7. Alexandrescu DT, Ichim TE, Riordan NH et al (2010) Immunotherapy for melanoma: current status and perspectives. J Immunother 33:570–590

    Article  PubMed  CAS  Google Scholar 

  8. Boasberg P, Hamid O, O’Day S (2010) Ipilimumab: unleashing the power of the immune system through CTLA-4 blockade. Semin Oncol 37:440–449

    Article  PubMed  CAS  Google Scholar 

  9. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed  CAS  Google Scholar 

  10. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  11. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  PubMed  CAS  Google Scholar 

  12. Boh B, Berovic M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13:265–301

    Article  PubMed  CAS  Google Scholar 

  13. Zhu M, Chang Q, Wong LK, Chong FS, Li RC (1999) Triterpene antioxidants from ganoderma lucidum. Phytother Res 13:529–531

    Article  PubMed  CAS  Google Scholar 

  14. Miyamoto I, Liu J, Shimizu K et al (2009) Regulation of osteoclastogenesis by ganoderic acid DM isolated from Ganoderma lucidum. Eur J Pharmacol 602:1–7

    Article  PubMed  CAS  Google Scholar 

  15. Norton DL, Haque A (2009) Insights into the role of GILT in HLA class II antigen processing and presentation by melanoma. J Oncol 2009:142959

    Article  PubMed  Google Scholar 

  16. Zhao D, Amria S, Hossain A et al (2011) Enhancement of HLA class II-restricted CD4+ T cell recognition of human melanoma cells following treatment with bryostatin-1. Cell Immunol 271:392–400

    Article  PubMed  CAS  Google Scholar 

  17. Li P, Gregg JL, Wang N et al (2005) Compartmentalization of class II antigen presentation: contribution of cytoplasmic and endosomal processing. Immunol Rev 207:206–217

    Article  PubMed  CAS  Google Scholar 

  18. Nimmerjahn F, Milosevic S, Behrends U et al (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33:1250–1259

    Article  PubMed  CAS  Google Scholar 

  19. Gannage M, Munz C (2009) Autophagy in MHC class II presentation of endogenous antigens. Curr Top Microbiol Immunol 335:123–140

    Article  PubMed  CAS  Google Scholar 

  20. Strawbridge AB, Blum JS (2007) Autophagy in MHC class II antigen processing. Curr Opin Immunol 19:87–92

    Article  PubMed  CAS  Google Scholar 

  21. Paludan C, Schmid D, Landthaler M et al (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–596

    Article  PubMed  CAS  Google Scholar 

  22. Dengjel J, Schoor O, Fischer R et al (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102:7922–7927

    Article  PubMed  CAS  Google Scholar 

  23. Kumamoto Y, Iwasaki A (2008) MHC class II-presentation of antigen by autophagy. Tanpakushitsu Kakusan Koso 53:2286–2291

    PubMed  CAS  Google Scholar 

  24. Goldstein OG, Hajiaghamohseni LM, Amria S, Sundaram K, Reddy SV, Haque A (2008) Gamma-IFN-inducible-lysosomal thiol reductase modulates acidic proteases and HLA class II antigen processing in melanoma. Cancer Immunol Immunother 57:1461–1470

    Article  PubMed  CAS  Google Scholar 

  25. Haque MA, Hawes JW, Blum JS (2001) Cysteinylation of MHC class II ligands: peptide endocytosis and reduction within APC influences T cell recognition. J Immunol 166:4543–4551

    PubMed  CAS  Google Scholar 

  26. Haque MA, Li P, Jackson SK et al (2002) Absence of gamma-interferon-inducible lysosomal thiol reductase in melanomas disrupts T cell recognition of select immunodominant epitopes. J Exp Med 195:1267–1277

    Article  PubMed  CAS  Google Scholar 

  27. Amria S, Hajiaghamohseni LM, Harbeson C et al (2008) HLA-DM negatively regulates HLA-DR4-restricted collagen pathogenic peptide presentation and T cell recognition. Eur J Immunol 38:1961–1970

    Article  PubMed  CAS  Google Scholar 

  28. Radwan FF, Zhang L, Hossain A, Doonan BP, God JM, Haque A (2011) Mechanisms regulating enhanced human leukocyte antigen class II-mediated CD4+ T cell recognition of human B-cell lymphoma by resveratrol. Leuk Lymphoma 53:305–314

    Article  PubMed  Google Scholar 

  29. Wu GS, Lu JJ, Guo JJ et al (2012) Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 83:408–414

    Article  PubMed  CAS  Google Scholar 

  30. Surjit M, Kumar R, Mishra RN, Reddy MK, Chow VT, Lal SK (2005) The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J Virol 79:11476–11486

    Article  PubMed  CAS  Google Scholar 

  31. Haque A, Das A, Hajiaghamohseni LM, Younger A, Banik NL, Ray SK (2007) Induction of apoptosis and immune response by all-trans retinoic acid plus interferon-gamma in human malignant glioblastoma T98G and U87MG cells. Cancer Immunol Immunother 56:615–625

    Article  PubMed  CAS  Google Scholar 

  32. Younger AR, Amria S, Jeffrey WA et al (2008) HLA class II antigen presentation by prostate cancer cells. Prostate Cancer Prostatic Dis 11:334–341

    Article  PubMed  CAS  Google Scholar 

  33. Ugen KE, Kutzler MA, Marrero B et al (2006) Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of an IL-15-expressing plasmid followed by in vivo electroporation. Cancer Gene Ther 13:969–974

    Article  PubMed  CAS  Google Scholar 

  34. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957

    Article  PubMed  CAS  Google Scholar 

  35. Raftopoulou M (2005) Mitochondrial wrinkles: the first signs of ageing? Nat Cell Biol 7:853

    Article  PubMed  Google Scholar 

  36. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  PubMed  CAS  Google Scholar 

  37. Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  PubMed  CAS  Google Scholar 

  38. Kadowaki M, Karim MR (2009) Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol 452:199–213

    Article  PubMed  CAS  Google Scholar 

  39. Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026

    Article  PubMed  CAS  Google Scholar 

  40. Mujumdar N, Saluja AK (2010) Autophagy in pancreatic cancer: an emerging mechanism of cell death. Autophagy 6:997–998

    Article  PubMed  Google Scholar 

  41. Hu Y, Benedict MA, Ding L, Nunez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 18:3586–3595

    Article  PubMed  CAS  Google Scholar 

  42. Reubold TF, Wohlgemuth S, Eschenburg S (2009) A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. J Biol Chem 284:32717–32724

    Article  PubMed  CAS  Google Scholar 

  43. Ciechomska IA, Goemans GC, Skepper JN, Tolkovsky AM (2009) Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene 28:2128–2141

    Article  PubMed  CAS  Google Scholar 

  44. Vazquez CL, Colombo MI (2010) Beclin 1 modulates the anti-apoptotic activity of Bcl-2: insights from a pathogen infection system. Autophagy 6:177–178

    Article  PubMed  Google Scholar 

  45. Slipicevic A, Herlyn M (2012) Narrowing the knowledge gaps for melanoma. Ups J Med Sci 117:237–243

    Article  PubMed  Google Scholar 

  46. Nikolaou VA, Stratigos AJ, Flaherty KT, Tsao H (2012) Melanoma: new insights and new therapies. J Invest Dermatol 132:854–863

    Article  PubMed  CAS  Google Scholar 

  47. Haque A, Blum JS (2005) New insights in antigen processing and epitope selection: development of novel immunotherapeutic strategies for cancer, autoimmunity and infectious diseases. J Biol Regul Homeost Agents 19:93–104

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (R01 CA129560 and R01 CA129560-S1 to A. Haque). The research presented in this article was also supported in part by the Tissue Biorepository and Flow Cytometry Shared Resource as part of the Hollings Cancer Center at the Medical University of South Carolina which is funded by a Cancer Center Support Grant P30 CA138313. We thank Drs. Janice Blum (Indiana University, Indianapolis), Craig Slingluff Jr. (University of Virginia, Charlottesville) for melanoma cell lines; Drs. L. Xiang, Christina Johnson, and Carola Neumann (MUSC) for antibodies; Dr. Sakamuri Reddy (Dept. of Pediatrics, MUSC) for his critical reading of the manuscript and Dr. M. Rubinstein (Dept. of Surgery) for technical assistance. We also gratefully acknowledge Dr. Chenthamarakshan Vasu (MUSC) for his Fow Cytometry Facility.

Conflicts of Interest

No conflicts of interest were disclosed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azizul Haque.

Additional information

Azim Hossain and Faisal Radwan contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, A., Radwan, F.F.Y., Doonan, B.P. et al. A possible cross-talk between autophagy and apoptosis in generating an immune response in melanoma. Apoptosis 17, 1066–1078 (2012). https://doi.org/10.1007/s10495-012-0745-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0745-y

Keywords

Navigation