Skip to main content
Log in

β-Arrestin prevents cell apoptosis through pro-apoptotic ERK1/2 and p38 MAPKs and anti-apoptotic Akt pathways

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Our previous studies have shown that β-arrestin 2 plays an anti-apoptotic effect. However, the mechanisms by which β-arrestin contribute to anti-apoptotic role remain unclear. In this study, we show that a deficiency of either β-arrestin 1 or β-arrestin 2 significantly increases serum deprivation (SD)-induced percentage of apoptotic cells. β-arrestin 2 deficient-induced apoptosis was inhibited by transfection with β-arrestin 2 full-length plasmid, revealing that SD-induced apoptosis is dependent on β-arrestin 2. Furthermore, in the absence of either β-arrestin 1 or β-arrestin 2 significantly enhances SD-induced the level of pro-apoptotic proteins, including cleaved caspase-3, extracellular-signal regulated kinase 1/2 (ERK1/2) and p38, members of mitogen-activated protein kinases (MAPKs). In addition, a deficiency of either β-arrestin 1 or β-arrestin 2 inhibits phosphorylation of Akt. The SD-induced changes in cleaved caspase-3, ERK1/2 and p38 MAPKs, Akt, and apoptotic cell numbers could be blocked by double knockout of β-arrestin 1/2. Our study thus demonstrates that β-arrestin inhibits cell apoptosis through pro-apoptotic ERK1/2 and p38 MAPKs and anti-apoptotic Akt signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

KO:

Knockout

DKO:

Double knockout

SD:

Serum deprivation

TUNEL:

Terminal deoxynucleotidyl transferase biotin dUTP nick end labeling

ERK1/2:

Extracellular-signal regulated kinase 1/2

MAPKs:

Mitogen-activated protein kinases

References

  1. Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ (2009) Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 17:443–458

    Article  PubMed  CAS  Google Scholar 

  2. Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G (2003) Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem 278:6363–6370

    Article  PubMed  CAS  Google Scholar 

  3. Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17:159–165

    Article  PubMed  CAS  Google Scholar 

  4. Lymperopoulos A, Bathgate A (2012) Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins: the known and the unknown. Pharmacogenomics 13:323–341

    Article  PubMed  CAS  Google Scholar 

  5. Ma L, Pei G (2007) Beta-arrestin signaling and regulation of transcription. J Cell Sci 120:213–218

    Article  PubMed  CAS  Google Scholar 

  6. Lymperopoulos A (2012) Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors. Curr Pharm Des 18:192–198

    Article  PubMed  CAS  Google Scholar 

  7. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  PubMed  CAS  Google Scholar 

  8. Revankar CM, Vines CM, Cimino DF, Prossnitz ER (2004) Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem 279:24578–24584

    Article  PubMed  CAS  Google Scholar 

  9. Povsic TJ, Kohout TA, Lefkowitz RJ (2003) Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem 278:51334–51339

    Article  PubMed  CAS  Google Scholar 

  10. Luan B, Zhang Z, Wu Y, Kang J, Pei G (2005) Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J 24:4237–4246

    Article  PubMed  CAS  Google Scholar 

  11. Sun X, Zhang Y, Wang J, Wei L, Li H, Hanley G, Zhao M, Li Y, Yin D (2010) Beta-arrestin 2 modulates resveratrol-induced apoptosis and regulation of Akt/GSK3β pathways. Biochim Biophys Acta 1800:912–918

    Article  PubMed  CAS  Google Scholar 

  12. Xie N, Li H, Wei D, LeSage G, Chen L, Wang S, Zhang Y, Chi L, Ferslew K, He L, Chi Z, Yin D (2010) Glycogen synthase kinase-3 and p38 MAPK are required for opioid-induced microglia apoptosis. Neuropharmacology 59:444–451

    Article  PubMed  CAS  Google Scholar 

  13. Yin D, Woodruff M, Zhang Y, Whaley S, Miao J, Ferslew K, Zhao J, Stuart C (2006) Morphine promotes jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J Neuroimmunol 174:101–107

    Article  PubMed  CAS  Google Scholar 

  14. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  15. Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093

    Article  PubMed  CAS  Google Scholar 

  16. Tegeder I, Geisslinger G (2004) Opioids as modulators of cell death and survival—unraveling mechanisms and revealing new indications. Pharmacol Rev 56:351–369

    Article  PubMed  CAS  Google Scholar 

  17. Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C, Benito M, Nebreda AR (2004) P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15:922–933

    Article  PubMed  CAS  Google Scholar 

  18. Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277:2–21

    Article  PubMed  CAS  Google Scholar 

  19. Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Sun X, Zhang Y, Huang J, Hanley G, Ferslew KE, Peng Y, Yin D (2009) Morphine promotes apoptosis via TLR2, and this is negatively regulated by beta-arrestin 2. Biochem Biophys Res Commun 378:857–861

    Article  PubMed  CAS  Google Scholar 

  21. Hetman M, Cavanaugh JE, Kimelman D, Xia Z (2000) Role of glycogen synthase kinase-3 beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci 20:2567–2574

    PubMed  CAS  Google Scholar 

  22. Eom TY, Roth KA, Jope RS (2007) Neural precursor cells are protected from apoptosis induced by trophic factor withdrawal or genotoxic stress by inhibitors of glycogen synthase kinase 3. J Biol Chem 282:22856–22864

    Article  PubMed  CAS  Google Scholar 

  23. Li Y, Li H, Zhang Y, Sun X, Hanley GA, LeSage G, Sun S, Peng Y, Yin D (2010) Toll-like receptor 2 is required for opioids-induced neuronal apoptosis. Biochem Biophys Res Commun 391:426–430

    Article  PubMed  CAS  Google Scholar 

  24. He L, Li H, Chen L, Miao J, Jiang Y, Zhang Y, Xiao Z, Hanley G, Li Y, Zhang X, LeSage G, Peng Y, Yin D (2011) Toll-like receptor 9 is required for opioid-induced microglia apoptosis. PLoS One 6:e18190

    Article  PubMed  CAS  Google Scholar 

  25. Mazumder S, Plesca D, Almasan A (2008) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 414:13–21

    PubMed  CAS  Google Scholar 

  26. Beaulieu JM, Gainetdinov RR, Caron MG (2007) The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol Sci 28:166–172

    Article  PubMed  CAS  Google Scholar 

  27. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  PubMed  CAS  Google Scholar 

  28. Scheid MP, Woodgett JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2:760–768

    Article  PubMed  CAS  Google Scholar 

  29. Moore CA, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482

    Article  PubMed  CAS  Google Scholar 

  30. Buchanan FG, DuBois RN (2006) Emerging roles of beta-arrestins. Cell Cycle 5:2060–2063

    Article  PubMed  CAS  Google Scholar 

  31. Wang X, Martindale JL, Liu Y, Holbrook NJ (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333(Pt 2):291–300

    PubMed  CAS  Google Scholar 

  32. Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J (1998) SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 143:1361–1373

    Article  PubMed  CAS  Google Scholar 

  33. De Zutter GS, Davis RJ (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci USA 98:6168–6173

    Article  PubMed  Google Scholar 

  34. Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M, Izumo S (2002) Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277:10244–10250

    Article  PubMed  CAS  Google Scholar 

  35. Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ (2002) ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 277:12710–12717

    Article  PubMed  CAS  Google Scholar 

  36. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  37. Liu X, Li Q, Dowdell K, Fischer ER, Cohen JI (2012) Varicella-zoster virus ORF12 protein triggers phosphorylation of ERK1/2 and inhibits apoptosis. J Virol 86:3143–3151

    Article  PubMed  CAS  Google Scholar 

  38. Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ (2009) {Beta}-arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J Biol Chem 284:8855–8865

    Article  PubMed  CAS  Google Scholar 

  39. Osaki M, Oshimura M, Ito H (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9:667–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Shanghai Technology Department to Q. Li. The authors wish to express their appreciation to Dr. Robert Lefkowitz, Duke University Medical School, for providing WT MEFs, β-arrestin 1 or 2 KO MEFs, and β-arrestin 1/2 DKO MEFs and to Dr. Gang Pei, Shanghai Institutes for Biological Science of China, for providing β-arrestin 2 full-length plasmid and control plasmid.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haixin Qian or Qinchuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Zhou, G., Ren, T. et al. β-Arrestin prevents cell apoptosis through pro-apoptotic ERK1/2 and p38 MAPKs and anti-apoptotic Akt pathways. Apoptosis 17, 1019–1026 (2012). https://doi.org/10.1007/s10495-012-0741-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0741-2

Keywords

Navigation