Skip to main content

Advertisement

Log in

Activation of apoptotic signalling events in human embryonic stem cells upon Coxsackievirus B3 infection

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate to a wide range of specialized cells and hold great promise as models for human development and disease, as well as for drug discovery and cell-replacement therapies. Group B Coxsackie viruses (CVBs) produce acute myocarditis, pancreatitis, non-septic meningitis and encephalitis in neonates, children and young adults. Moreover, CVBs can produce spontaneous miscarriage after early embryo infection. It was reported that hESCs express CVBs receptors and are susceptible to CVB3 infection. Apoptosis is one of the hallmarks of CVBs infection although details regarding CVB3 involvement in the apoptotic processes remain elusive. In order to evaluate the mechanisms of cell death induced by CVB3 in these pluripotent cells, we infected HUES-5 (H5) and WA01 (H1) hESC lines with CVB3. After validating the maintenance of stemness in these hESC lines when grown as confluent monolayers in feeder-free conditions, we analysed several aspects of programmed cell death triggered by CVB3. In all cases, we detected chromatin condensation, DNA fragmentation and caspase-9 and 3 cleavages. Moreover, we observed the presence of cleaved PARP product which was preceded by the appearance of p17, the catalytically active fragment of caspase-3. Mitochondrial function assays revealed a MOI dependent decrease in cell viability at 24 h post-infection (pi). No appreciable modifications in Bcl-2, Bcl-XL and Bax protein levels were observed upon CVB3 infection during 5–24 h observation period. However, a marked decrease in pro-apoptotic Bad abundance was detected without changes in its mRNA levels. In this study we found that the hESCs are highly susceptible to CVB3 infection and display elevated apoptosis rates, thus emerging as suitable human non-transformed in vitro models to study CVB3-induced apoptosis and resulting relevant to understand CVBs pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

hESCs:

Human embryonic stem cells

CVB3:

Coxsackie virus B3

H5:

HUES-5 cell line

H1:

WA01 cell line

MOI:

Multiplicity of infection

PARP:

Poly-ADP-ribose-polymerase

CAR:

Coxsackievirus-adenovirus receptor

DAF:

Decay accelerating factor

VP1:

Viral protein 1

Ac-DEVDpNA :

Acetyl-Asp-Glu-Val-Asp-7-amino-4 p-nitroanilide

iMEF:

Inactivated mouse embryonic fibroblast

KSR:

Knockout Serum Replacement

DAPI:

4-6-Diamidino-2-phenylindole

XTT:

2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5 [(phenylamino) carbonyl]-2 H-tetrazolium hydroxide

PMS:

N-methyl dibenzopyrazine methyl sulfate

BCA:

Bicinchoninic acid

Pi:

Post-infection

Cpe:

Cytopathic effect

TUNEL:

Terminal dUTP nick end labeling

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  2. Klimanskaya I, Rosenthal N, Lanza R (2008) Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 7:131–142

    Article  PubMed  CAS  Google Scholar 

  3. Bergelson JM, Modlin JF, Wieland-Alter W, Cunningham JA, Crowell RL, Finberg RW (1997) Clinical coxsackievirus B isolates differ from laboratory strains in their interaction with two cell surface receptors. J Infect Dis 175:697–700

    Article  PubMed  CAS  Google Scholar 

  4. Muckelbauer JK, Kremer M, Minor I et al (1995) The structure of coxsackievirus B3 at 3.5 Å resolution. Structure 3:653–667

    Article  PubMed  CAS  Google Scholar 

  5. He Y, Chipman PR, Howitt J et al (2001) Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat Struct Biol 8:874–878

    Article  PubMed  CAS  Google Scholar 

  6. Rossmann MG (1989) The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J Biol Chem 264:14587–14590

    PubMed  CAS  Google Scholar 

  7. Bergelson JM, Cunningham JA, Droguett G et al (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    Article  PubMed  CAS  Google Scholar 

  8. Shafren DR, Williams DT, Barry RD (1997) A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. J Virol 71:9844–9848

    PubMed  CAS  Google Scholar 

  9. Woodruff JF (1980) Viral myocarditis. A review. Am J Pathol 101:425–484

    PubMed  CAS  Google Scholar 

  10. Wessely R, Henke A, Zell R, Kandolf R, Knowlton KU (1998) Low-level expression of a mutant coxsackieviral cDNA induces a myocytopathic effect in culture: an approach to the study of enteroviral persistence in cardiac myocytes. Circulation 98:450–457

    PubMed  CAS  Google Scholar 

  11. Whitton JL, Cornell CT, Feuer R (2005) Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 3:765–776

    Article  PubMed  CAS  Google Scholar 

  12. Iwasaki T, Monma N, Satodate R, Kawana R, Kurata T (1985) An immunofluorescent study of generalized Coxsackie virus B3 infection in a newborn infant. Acta Pathol Jpn 35:741–748

    PubMed  CAS  Google Scholar 

  13. Pavesi G, Gemignani F, Macaluso GM et al (1992) Acute sensory and autonomic neuropathy: possible association with coxsackie B virus infection. J Neurol Neurosurg Psychiatry 55:613–615

    Article  PubMed  CAS  Google Scholar 

  14. Basso NG, Fonseca ME, Garcia AG, Zuardi JA, Silva MR, Outani H (1990) Enterovirus isolation from foetal and placental tissues. Acta Virol 34:49–57

    PubMed  CAS  Google Scholar 

  15. Frisk G, Diderholm H (1992) Increased frequency of coxsackie B virus IgM in women with spontaneous abortion. J Infect 24:141–145

    Article  PubMed  CAS  Google Scholar 

  16. Axelsson C, Bondestam K, Frisk G, Bergstrom S, Diderholm H (1993) Coxsackie B virus infections in women with miscarriage. J Med Virol 39:282–285

    Article  PubMed  CAS  Google Scholar 

  17. Nuovo GJ, Cooper LD, Bartholomew D (2005) Histologic, infectious, and molecular correlates of idiopathic spontaneous abortion and perinatal mortality. Diagn Mol Pathol 14:152–158

    Article  PubMed  Google Scholar 

  18. Feuer R, Pagarigan RR, Harkins S, Liu F, Hunziker IP, Whitton JL (2005) Coxsackievirus targets proliferating neuronal progenitor cells in the neonatal CNS. J Neurosci 25:2434–2444

    Article  PubMed  CAS  Google Scholar 

  19. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  20. Cory S (1995) Regulation of lymphocyte survival by the bcl-2 gene family. Annu Rev Immunol 13:513–543

    Article  PubMed  CAS  Google Scholar 

  21. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

  22. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  23. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  24. Lazebnik YA, Takahashi A, Moir RD et al (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 92:9042–9046

    Article  PubMed  CAS  Google Scholar 

  25. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347

    Article  PubMed  CAS  Google Scholar 

  26. Mashima T, Naito M, Fujita N, Noguchi K, Tsuruo T (1995) Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16-induced U937 apoptosis. Biochem Biophys Res Commun 217:1185–1192

    Article  PubMed  CAS  Google Scholar 

  27. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  28. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  29. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  30. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    Article  PubMed  CAS  Google Scholar 

  31. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  PubMed  CAS  Google Scholar 

  32. Abastado JP (1996) Apoptosis: function and regulation of cell death. Res Immunol 147:443–456

    Article  PubMed  CAS  Google Scholar 

  33. Eick D, Hermeking H (1996) Viruses as pacemakers in the evolution of defence mechanisms against cancer. Trends Genet 12:4–6

    Article  PubMed  CAS  Google Scholar 

  34. Bouzar AB, Villet S, Morin T et al (2004) Simian immunodeficiency virus Vpr/Vpx proteins kill bystander noninfected CD4+ T-lymphocytes by induction of apoptosis. Virology 326:47–56

    Article  PubMed  CAS  Google Scholar 

  35. Petrovas C, Mueller YM, Katsikis PD (2004) HIV-specific CD8+ T cells: serial killers condemned to die? Curr HIV Res 2:153–162

    Article  PubMed  CAS  Google Scholar 

  36. Feuer R, Mena I, Pagarigan RR, Harkins S, Hassett DE, Whitton JL (2003) Coxsackievirus B3 and the neonatal CNS: the roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease. Am J Pathol 163:1379–1393

    Article  PubMed  CAS  Google Scholar 

  37. Saraste A, Arola A, Vuorinen T et al (2003) Cardiomyocyte apoptosis in experimental coxsackievirus B3 myocarditis. Cardiovasc Pathol 12:255–262

    Article  PubMed  Google Scholar 

  38. Yuan JP, Zhao W, Wang HT et al (2003) Coxsackievirus B3-induced apoptosis and caspase-3. Cell Res 13:203–209

    Article  PubMed  CAS  Google Scholar 

  39. Carthy CM, Granville DJ, Watson KA et al (1998) Caspase activation and specific cleavage of substrates after coxsackievirus B3-induced cytopathic effect in HeLa cells. J Virol 72:7669–7675

    PubMed  CAS  Google Scholar 

  40. Cunningham KA, Chapman NM, Carson SD (2003) Caspase-3 activation and ERK phosphorylation during CVB3 infection of cells: influence of the coxsackievirus and adenovirus receptor and engineered variants. Virus Res 92:179–186

    Article  PubMed  CAS  Google Scholar 

  41. Carthy CM, Yanagawa B, Luo H et al (2003) Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology 313:147–157

    Article  PubMed  CAS  Google Scholar 

  42. Luo H, Yanagawa B, Zhang J et al (2002) Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76:3365–3373

    Article  PubMed  CAS  Google Scholar 

  43. Tabor-Godwin JM, Ruller CM, Bagalso N et al (2010) A novel population of myeloid cells responding to coxsackievirus infection assists in the dissemination of virus within the neonatal CNS. J Neurosci 30:8676–8691

    Article  PubMed  CAS  Google Scholar 

  44. Scassa ME, de Giusti CJ, Questa M et al (2011) Human embryonic stem cells and derived contractile embryoid bodies are susceptible to Coxsakievirus B infection and respond to interferon I beta treatment. Stem Cell Res 6:13–22

    Article  PubMed  CAS  Google Scholar 

  45. Rinehart JE, Gomez RM, Roos RP (1997) Molecular determinants for virulence in coxsackievirus B1 infection. J Virol 71:3986–3991

    PubMed  CAS  Google Scholar 

  46. Buenz EJ, Howe CL (2006) Picornaviruses and cell death. Trends Microbiol 14:28–36

    Article  PubMed  CAS  Google Scholar 

  47. Xu R, Crowell RL (1996) Expression and distribution of the receptors for coxsackievirus B3 during fetal development of the Balb/c mouse and of their brain cells in culture. Virus Res 46:157–170

    Article  PubMed  CAS  Google Scholar 

  48. Dravid G, Ye Z, Hammond H et al (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501

    Article  PubMed  CAS  Google Scholar 

  49. Martin U, Jarasch N, Nestler M et al (2007) Antiviral effects of pan-caspase inhibitors on the replication of coxsackievirus B3. Apoptosis 12:525–533

    Article  PubMed  CAS  Google Scholar 

  50. Kyto V, Lapatto R, Lakkisto P et al (2004) Glutathione depletion and cardiomyocyte apoptosis in viral myocarditis. Eur J Clin Invest 34:167–175

    Article  PubMed  CAS  Google Scholar 

  51. Joo CH, Hong HN, Kim EO et al (2003) Coxsackievirus B3 induces apoptosis in the early phase of murine myocarditis: a comparative analysis of cardiovirulent and noncardiovirulent strains. Intervirology 46:135–140

    Article  PubMed  Google Scholar 

  52. Colston JT, Chandrasekar B, Freeman GL (1998) Expression of apoptosis-related proteins in experimental coxsackievirus myocarditis. Cardiovasc Res 38:158–168

    Article  PubMed  CAS  Google Scholar 

  53. Fueller J, Becker M, Sienerth AR, Fischer A, Hotz C, Galmiche A (2008) C-RAF activation promotes BAD poly-ubiquitylation and turn-over by the proteasome. Biochem Biophys Res Commun 370:552–556

    Article  PubMed  CAS  Google Scholar 

  54. Romorini L, Coso OA, Pecci A (2009) Bcl-XL mediates epidermal growth factor dependent cell survival in HC11 mammary epithelial cells. Biochim Biophys Acta 1793:496–505

    Article  PubMed  CAS  Google Scholar 

  55. Roberts ML, Virdee K, Sampson CP, Gordon I, Parone P, Tolkovsky AM (2000) The combination of bcl-2 expression and NGF-deprivation facilitates the selective destruction of BAD protein in living sympathetic neurons. Mol Cell Neurosci 16:97–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) PID2007-00112, PICT 07-00642 and PICT 07-00028. The authors would like to thank Marcela Cañari for her skillful assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago G. Miriuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romorini, L., Scassa, M.E., Richardson, G.V. et al. Activation of apoptotic signalling events in human embryonic stem cells upon Coxsackievirus B3 infection. Apoptosis 17, 132–142 (2012). https://doi.org/10.1007/s10495-011-0668-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0668-z

Keywords

Navigation