Skip to main content

Advertisement

Log in

Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Skeletal muscle atrophy is associated with elevated apoptosis while muscle differentiation results in apoptosis resistance, indicating that the role of apoptosis in skeletal muscle is multifaceted. The objective of this study was to investigate mechanisms underlying apoptosis susceptibility in proliferating myoblasts compared to differentiated myotubes and we hypothesized that cell death-resistance in differentiated myotubes is mediated by enhanced anti-apoptotic pathways. C2C12 myoblasts and myotubes were treated with H2O2 or staurosporine (Stsp) to induce cell death. H2O2 and Stsp induced DNA fragmentation in more than 50% of myoblasts, but in myotubes less than 10% of nuclei showed apoptotic changes. Mitochondrial membrane potential dissipation was detected with H2O2 and Stsp in myoblasts, while this response was greatly diminished in myotubes. Caspase-3 activity was 10-fold higher in myotubes compared to myoblasts, and Stsp caused a significant caspase-3 induction in both. However, exposure to H2O2 did not lead to caspase-3 activation in myoblasts, and only to a modest induction in myotubes. A similar response was observed for caspase-2, -8 and -9. Abundance of caspase-inhibitors (apoptosis repressor with caspase recruitment domain (ARC), and heat shock protein (HSP) 70 and -25 was significantly higher in myotubes compared to myoblasts, and in addition ARC was suppressed in response to Stsp in myotubes. Moreover, increased expression of HSPs in myoblasts attenuated cell death in response to H2O2 and Stsp. Protein abundance of the pro-apoptotic protein endonuclease G (EndoG) and apoptosis-inducing factor (AIF) was higher in myotubes compared to myoblasts. These results show that resistance to apoptosis in myotubes is increased despite high levels of pro-apoptotic signaling mechanisms, and we suggest that this protective effect is mediated by enhanced anti-caspase mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jagani Z, Khosravi-Far R (2008) Cancer stem cells and impaired apoptosis. Adv Exp Med Biol 615:331–344

    Article  PubMed  CAS  Google Scholar 

  2. Melet A, Song K, Bucur O, Jagani Z, Grassian AR, Khosravi-Far R (2008) Apoptotic pathways in tumor progression and therapy. Adv Exp Med Biol 615:47–79

    Article  PubMed  CAS  Google Scholar 

  3. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  PubMed  CAS  Google Scholar 

  4. Kermer P, Liman J, Weishaupt JH, Bahr M (2004) Neuronal apoptosis in neurodegenerative diseases: from basic research to clinical application. Neurodegener Dis 1:9–19

    Article  PubMed  Google Scholar 

  5. Adams V, Jiang H, Yu J et al (1999) Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol 33:959–965

    Article  PubMed  CAS  Google Scholar 

  6. Tews DS (2005) Muscle-fiber apoptosis in neuromuscular diseases. Muscle Nerve 32:443–458

    Article  PubMed  CAS  Google Scholar 

  7. Mukasa T, Momoi T, Momoi MY (1999) Activation of caspase-3 apoptotic pathways in skeletal muscle fibers in laminin alpha2-deficient mice. Biochem Biophys Res Commun 260:139–142

    Article  PubMed  CAS  Google Scholar 

  8. Tidball JG, Albrecht DE, Lokensgard BE, Spencer MJ (1995) Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci 108(Pt 6):2197–2204

    PubMed  CAS  Google Scholar 

  9. Irwin WA, Bergamin N, Sabatelli P et al (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371

    Article  PubMed  CAS  Google Scholar 

  10. Dirks A, Leeuwenburgh C (2002) Apoptosis in skeletal muscle with aging. Am J Physiol Regul Integr Comp Physiol 282:R519–R527

    PubMed  CAS  Google Scholar 

  11. Siu PM, Pistilli EE, Butler DC, Alway SE (2005) Aging influences the cellular and molecular responses of apoptosis to skeletal muscle unloading. Am J Physiol Cell Physiol 288:C338–C349

    Article  PubMed  CAS  Google Scholar 

  12. Strasser H, Tiefenthaler M, Steinlechner M, Eder I, Bartsch G, Konwalinka G (2000) Age dependent apoptosis and loss of rhabdosphincter cells. J Urol 164:1781–1785

    Article  PubMed  CAS  Google Scholar 

  13. Smith HK, Maxwell L, Martyn JA, Bass JJ (2000) Nuclear DNA fragmentation and morphological alterations in adult rabbit skeletal muscle after short-term immobilization. Cell Tissue Res 302:235–241

    Article  PubMed  CAS  Google Scholar 

  14. Dupont-Versteegden EE, Murphy RJ, Houle JD, Gurley CM, Peterson CA (1999) Activated satellite cells fail to restore myonuclear number in spinal cord transected and exercised rats. Am J Physiol 277:C589–C597

    PubMed  CAS  Google Scholar 

  15. Dupont-Versteegden EE (2006) Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 12:7463–7466

    PubMed  CAS  Google Scholar 

  16. Leeuwenburgh C, Gurley CM, Strotman BA, Dupont-Versteegden EE (2005) Age-related differences in apoptosis with disuse atrophy in soleus muscle. Am J Physiol Regul Integr Comp Physiol 288:R1288–R1296

    PubMed  CAS  Google Scholar 

  17. Allen DL, Linderman JK, Roy RR et al (1997) Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 273:C579–C587

    PubMed  CAS  Google Scholar 

  18. Gallegly JC, Turesky NA, Strotman BA, Gurley CM, Peterson CA, Dupont-Versteegden EE (2004) Satellite cell regulation of muscle mass is altered at old age. J Appl Physiol 97:1082–1090

    Article  PubMed  Google Scholar 

  19. Borisov AB, Carlson BM (2000) Cell death in denervated skeletal muscle is distinct from classical apoptosis. Anat Rec 258:305–318

    Article  PubMed  CAS  Google Scholar 

  20. Bruusgaard JC, Gundersen K (2008) In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy. J Clin Invest 118:1450–1457

    Article  PubMed  CAS  Google Scholar 

  21. Dupont-Versteegden EE (2005) Apoptosis in muscle atrophy: relevance to sarcopenia. Exp Gerontol 40:473–481

    Article  PubMed  CAS  Google Scholar 

  22. Alway SE, Siu PM (2008) Nuclear apoptosis contributes to sarcopenia. Exerc Sport Sci Rev 36:51–57

    Article  PubMed  Google Scholar 

  23. Semsarian C, Wu M-J, Ju Y-K et al (1999) Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400:576–581

    Article  PubMed  CAS  Google Scholar 

  24. Anderson JE (2006) The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. J Exp Biol 209:2276–2292

    Article  PubMed  CAS  Google Scholar 

  25. Mitchell PO, Pavlath GK (2001) A muscle precursor cell-dependent pathway contributes to muscle growth after atrophy. Am J Physiol Cell Physiol 281:C1706–C1715

    PubMed  CAS  Google Scholar 

  26. Jejurikar SS, Kuzon WM Jr (2003) Satellite cell depletion in degenerative skeletal muscle. Apoptosis 8:573–578

    Article  PubMed  CAS  Google Scholar 

  27. Jejurikar SS, Henkelman EA, Cederna PS, Marcelo CL, Urbanchek MG, Kuzon WM Jr (2006) Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Exp Gerontol 41:828–836

    Article  PubMed  CAS  Google Scholar 

  28. Dupont-Versteegden EE, Strotman BA, Gurley CM et al (2006) Nuclear translocation of EndoG at the initiation of disuse muscle atrophy and apoptosis is specific to myonuclei. Am J Physiol Regul Integr Comp Physiol 291:R1730–R1740

    PubMed  CAS  Google Scholar 

  29. Siu PM, Wang Y, Alway SE (2009) Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci 84:468–481

    Article  PubMed  CAS  Google Scholar 

  30. Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet 49:193–199

    Article  PubMed  Google Scholar 

  31. Walsh K (1997) Coordinate regulation of cell cycle and apoptosis during myogenesis. Prog Cell Cycle Res 3:53–58

    PubMed  CAS  Google Scholar 

  32. Wang J, Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273:359–361

    Article  PubMed  CAS  Google Scholar 

  33. Camara Y, Duval C, Sibille B, Villarroya F (2007) Activation of mitochondrial-driven apoptosis in skeletal muscle cells is not mediated by reactive oxygen species production. Int J Biochem Cell Biol 39:146–160

    Article  PubMed  CAS  Google Scholar 

  34. Latella L, Lukas J, Simone C, Puri PL, Bartek J (2004) Differentiation-induced radioresistance in muscle cells. Mol Cell Biol 24:6350–6361

    Article  PubMed  CAS  Google Scholar 

  35. Smith MI, Huang YY, Deshmukh M (2009) Skeletal muscle differentiation evokes endogenous XIAP to restrict the apoptotic pathway. PLoS ONE 4:e5097

    Article  PubMed  Google Scholar 

  36. Fernando P, Megeney LA (2007) Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J 21:8–17

    Article  PubMed  CAS  Google Scholar 

  37. Garrido C, Kroemer G (2004) Life’s smile, death’s grin: vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 16:639–646

    Article  PubMed  CAS  Google Scholar 

  38. Rosado JA, Lopez JJ, Gomez-Arteta E, Redondo PC, Salido GM, Pariente JA (2006) Early caspase-3 activation independent of apoptosis is required for cellular function. J Cell Physiol 209:142–152

    Article  PubMed  CAS  Google Scholar 

  39. Schwerk C, Schulze-Osthoff K (2003) Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochem Pharmacol 66:1453–1458

    Article  PubMed  CAS  Google Scholar 

  40. Mogi M, Togari A (2003) Activation of caspases is required for osteoblastic differentiation. J Biol Chem 278:47477–47482

    Article  PubMed  CAS  Google Scholar 

  41. Miura M, Chen XD, Allen MR et al (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713

    PubMed  CAS  Google Scholar 

  42. Rohn TT, Cusack SM, Kessinger SR, Oxford JT (2004) Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 295:215–225

    Article  PubMed  CAS  Google Scholar 

  43. Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673

    PubMed  CAS  Google Scholar 

  44. Oomman S, Strahlendorf H, Finckbone V, Strahlendorf J (2005) Non-lethal active caspase-3 expression in Bergmann glia of postnatal rat cerebellum. Brain Res Dev Brain Res 160:130–145

    Article  PubMed  CAS  Google Scholar 

  45. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA 99:11025–11030

    Article  PubMed  CAS  Google Scholar 

  46. Weil M, Raff MC, Braga VM (1999) Caspase activation in the terminal differentiation of human epidermal keratinocytes. Curr Biol 9:361–364

    Article  PubMed  CAS  Google Scholar 

  47. Larsen BD, Rampalli S, Burns LE, Brunette S, Dilworth FJ, Megeney LA (2010) Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. PNAS 107:4230–4235

    Article  PubMed  CAS  Google Scholar 

  48. Taylor JM, Dupont-Versteegden EE, Davies JD et al (1997) A role for the ETS domain transcription factor PEA3 in myogenic differentiation. Mol Cell Biol 17:5550–5558

    PubMed  CAS  Google Scholar 

  49. Stangel M, Zettl UK, Mix E et al (1996) H2O2 and nitric oxide-mediated oxidative stress induce apoptosis in rat skeletal muscle myoblasts. J Neuropathol Exp Neurol 55:36–43

    Article  PubMed  CAS  Google Scholar 

  50. Xiao R, Su Y, Simmen RC, Simmen FA (2008) Dietary soy protein inhibits DNA damage and cell survival of colon epithelial cells through attenuated expression of fatty acid synthase. Am J Physiol Gastrointest Liver Physiol 294:G868–G876

    Article  PubMed  CAS  Google Scholar 

  51. Dupont-Versteegden EE, Nagarajan R, Beggs ML, Bearden ED, Simpson PM, Peterson CA (2008) Identification of cold-shock protein RBM3 as a possible regulator of skeletal muscle size through expression profiling. Am J Physiol Regul Integr Comp Physiol 295:R1263–R1273

    PubMed  CAS  Google Scholar 

  52. Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12:803–813

    Article  PubMed  CAS  Google Scholar 

  53. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    Article  PubMed  CAS  Google Scholar 

  54. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC III, Nunez G (1999) ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85:e70–e77

    PubMed  CAS  Google Scholar 

  55. Nam YJ, Mani K, Wu L et al (2007) The apoptosis inhibitor ARC undergoes ubiquitin-proteasomal-mediated degradation in response to death stimuli: identification of a degradation-resistant mutant. J Biol Chem 282:5522–5528

    Article  PubMed  CAS  Google Scholar 

  56. Takayama S, Reed JC, Homma S (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22:9041–9047

    Article  PubMed  CAS  Google Scholar 

  57. Voss OH, Batra S, Kolattukudy SJ, Gonzalez-Mejia ME, Smith JB, Doseff AI (2007) Binding of caspase-3 prodomain to heat shock protein 27 regulates monocyte apoptosis by inhibiting caspase-3 proteolytic activation. J Biol Chem 282:25088–25099

    Article  PubMed  CAS  Google Scholar 

  58. Schmitt E, Parcellier A, Gurbuxani S et al (2003) Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Res 63:8233–8240

    PubMed  CAS  Google Scholar 

  59. Siu PM, Pistilli EE, Alway SE (2005) Apoptotic responses to hindlimb suspension in gastrocnemius muscles from young adult and aged rats. Am J Physiol Regul Integr Comp Physiol 289:R1015–R1026

    PubMed  CAS  Google Scholar 

  60. Mercier I, Vuolo M, Madan R et al (2005) ARC, an apoptosis suppressor limited to terminally differentiated cells, is induced in human breast cancer and confers chemo- and radiation-resistance. Cell Death Differ 12:682–686

    Article  PubMed  CAS  Google Scholar 

  61. Mercer SE, Ewton DZ, Deng X, Lim S, Mazur TR, Friedman E (2005) Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts. J Biol Chem 280:25788–25801

    Article  PubMed  CAS  Google Scholar 

  62. Marzetti E, Hwang JC, Lees HA et al (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta 1800:235–244

    PubMed  CAS  Google Scholar 

  63. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  64. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  PubMed  CAS  Google Scholar 

  65. Chun HJ, Zheng L, Ahmad M et al (2002) Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:395–399

    Article  PubMed  CAS  Google Scholar 

  66. Kang TB, Ben-Moshe T, Varfolomeev EE et al (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984

    PubMed  CAS  Google Scholar 

  67. Sordet O, Rebe C, Plenchette S et al (2002) Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100:4446–4453

    Article  PubMed  CAS  Google Scholar 

  68. Murray TV, McMahon JM, Howley BA et al (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121:3786–3793

    Article  PubMed  CAS  Google Scholar 

  69. Black S, Kadyrov M, Kaufmann P, Ugele B, Emans N, Huppertz B (2004) Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ 11:90–98

    Article  PubMed  CAS  Google Scholar 

  70. Du J, Wang X, Miereles C et al (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123

    PubMed  CAS  Google Scholar 

  71. Dix MM, Simon GM, Cravatt BF (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–691

    Article  PubMed  CAS  Google Scholar 

  72. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  73. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16:6914–6925

    Article  PubMed  CAS  Google Scholar 

  74. Hunter AL, Zhang J, Chen SC et al (2007) Apoptosis repressor with caspase recruitment domain (ARC) inhibits myogenic differentiation. FEBS Lett 581:879–884

    Article  PubMed  CAS  Google Scholar 

  75. Koseki T, Inohara N, Chen S, Nunez G (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 95:5156–5160

    Article  PubMed  CAS  Google Scholar 

  76. Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C (2003) Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 304:505–512

    Article  PubMed  CAS  Google Scholar 

  77. Locke M, Noble EG, Tanguay RM, Feild MR, Ianuzzo SE, Ianuzzo CD (1995) Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am J Physiol 268:C1387–C1394

    PubMed  CAS  Google Scholar 

  78. Gorman AM, Szegezdi E, Quigney DJ, Samali A (2005) Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochem Biophys Res Commun 327:801–810

    Article  PubMed  CAS  Google Scholar 

  79. Samali A, Robertson JD, Peterson E et al (2001) Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress Chaperones 6:49–58

    Article  PubMed  CAS  Google Scholar 

  80. Bruey JM, Ducasse C, Bonniaud P et al (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    Article  PubMed  CAS  Google Scholar 

  81. Ravagnan L, Gurbuxani S, Susin SA et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    Article  PubMed  CAS  Google Scholar 

  82. Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736

    Article  PubMed  CAS  Google Scholar 

  83. Kamradt MC, Lu M, Werner ME et al (2005) The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280:11059–11066

    Article  PubMed  CAS  Google Scholar 

  84. Ikeda R, Yoshida K, Ushiyama M et al (2006) The small heat shock protein alphaB-crystallin inhibits differentiation-induced caspase 3 activation and myogenic differentiation. Biol Pharm Bull 29:1815–1819

    Article  PubMed  CAS  Google Scholar 

  85. Ito H, Kamei K, Iwamoto I, Inaguma Y, Kato K (2001) Regulation of the levels of small heat-shock proteins during differentiation of C2C12 cells. Exp Cell Res 266:213–221

    Article  PubMed  CAS  Google Scholar 

  86. Maglara AA, Vasilaki A, Jackson MJ, McArdle A (2003) Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. J Physiol 548:837–846

    Article  PubMed  CAS  Google Scholar 

  87. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by National Institute on Health grant # AG028925 and AR053967.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther E. Dupont-Versteegden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, R., Ferry, A.L. & Dupont-Versteegden, E.E. Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts. Apoptosis 16, 221–234 (2011). https://doi.org/10.1007/s10495-010-0566-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0566-9

Keywords

Navigation