Skip to main content
Log in

Zinc induced apoptotic death of mouse dendritic cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Zinc ions (Zn2+) are food components with favourable effects in infectious disease. Zn2+ is taken up into dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. In other cell types, Zn2+ has been shown to stimulate the formation of ceramide, which is in turn known to trigger suicidal cell death. The present study explored whether Zn2+ modifies ceramide formation and survival of bone marrow derived DCs. To this end, DCs were isolated from acid sphingomyelinase knockout (asm /) and corresponding wild type (asm +/+) mice and treated with different concentrations of Zn2+. Ceramide formation was assessed with anti-ceramide antibodies in FACS and immunohistochemical analysis, sub-G1 cell population by FACS analysis, break down of phosphatidylserine asymmetry by annexin V binding, cell death by propidium iodide incorporation, metabolic cell activity by MTT assay, ROS production from dichlorofluorescein fluorescence and activation of MAPKs by Western blotting. The treatment of asm +/+ DCs with low Zn2+ concentrations (up to 100 μM) was followed by ceramide formation, increase in sub-G1 cell population and phosphatidylserine exposure, effects blunted in asm / DCs. The treatment of DCs with C2-ceramide increased the percentage of sub-G1 and apoptotic DCs from both genotypes. Zn2+ led to similar activation of MAPKs in asm +/+ and asm / DCs and did not affect ROS production. Higher concentrations of Zn2+ led to a marked increase of propidium iodide incorporation in DCs of both genotypes. The present study reveals that in DCs Zn2+ triggers ceramide formation, which in turn compromises cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1515–1522

    Article  CAS  PubMed  Google Scholar 

  2. Prasad AS (1995) Zinc: an overview. Nutrition 11:93–99

    CAS  PubMed  Google Scholar 

  3. Cuevas LE, Koyanagi A (2005) Zinc and infection: a review. Ann Trop Paediatr 25:149–160

    Article  PubMed  Google Scholar 

  4. Fischer-Walker C, Black RE (2004) Zinc and the risk for infectious disease. Annu Rev Nutr 24:255–275

    Article  PubMed  Google Scholar 

  5. Richard SA, Zavaleta N, Caulfield LE et al (2006) Zinc and iron supplementation and malaria, diarrhea, and respiratory infections in children in the Peruvian Amazon. Am J Trop Med Hyg 75:126–132

    CAS  PubMed  Google Scholar 

  6. Hambidge KM (2006) Zinc and pneumonia. Am J Clin Nutr 83:991–992

    CAS  PubMed  Google Scholar 

  7. Brown KH, Lopez dR, Arsenault JE et al (2007) Comparison of the effects of zinc delivered in a fortified food or a liquid supplement on the growth, morbidity, and plasma zinc concentrations of young Peruvian children. Am J Clin Nutr 85:538–547

    CAS  PubMed  Google Scholar 

  8. Litonjua AA, Rifas-Shiman SL, Ly NP et al (2006) Maternal antioxidant intake in pregnancy and wheezing illnesses in children at 2 y of age. Am J Clin Nutr 84:903–911

    CAS  PubMed  Google Scholar 

  9. Prasad AS, Beck FW, Bao B et al (2007) Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 85:837–844

    CAS  PubMed  Google Scholar 

  10. Berger MM, Shenkin A (2007) Trace element requirements in critically ill burned patients. J Trace Elem Med Biol 21(Suppl 1):44–48

    Article  CAS  PubMed  Google Scholar 

  11. Fraker PJ, King LE (2004) Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr 24:277–298

    Article  CAS  PubMed  Google Scholar 

  12. Prasad AS (1998) Zinc and immunity. Mol Cell Biochem 188:63–69

    Article  CAS  PubMed  Google Scholar 

  13. Hosea HJ, Rector ES, Taylor CG (2003) Zinc-deficient rats have fewer recent thymic emigrant (CD90+) T lymphocytes in spleen and blood. J Nutr 133:4239–4242

    CAS  PubMed  Google Scholar 

  14. Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133:1452S–1456S

    CAS  PubMed  Google Scholar 

  15. Prasad AS (2000) Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J Infect Dis 182(Suppl 1):S62–S68

    Article  CAS  PubMed  Google Scholar 

  16. Adler HS, Steinbrink K (2007) Tolerogenic dendritic cells in health and disease: friend and foe!. Eur J Dermatol 17:476–491

    CAS  PubMed  Google Scholar 

  17. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  PubMed  Google Scholar 

  18. van Duivenvoorde LM, Han WG, Bakker AM et al (2007) Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J Immunol 179:1506–1515

    PubMed  Google Scholar 

  19. Steinbrink K, Mahnke K, Grabbe S et al (2009) Myeloid dendritic cell: from sentinel of immunity to key player of peripheral tolerance? Hum Immunol 70:289–293

    Article  CAS  PubMed  Google Scholar 

  20. Cerovic V, McDonald V, Nassar MA et al (2009) New insights into the roles of dendritic cells in intestinal immunity and tolerance. Int Rev Cell Mol Biol 272:33–105

    Article  CAS  PubMed  Google Scholar 

  21. Edelman SM, Kasper DL (2008) Symbiotic commensal bacteria direct maturation of the host immune system. Curr Opin Gastroenterol 24:720–724

    Article  PubMed  Google Scholar 

  22. Rescigno M, Lopatin U, Chieppa M (2008) Interactions among dendritic cells, macrophages, and epithelial cells in the gut: implications for immune tolerance. Curr Opin Immunol 20:669–675

    Article  CAS  PubMed  Google Scholar 

  23. Kitamura H, Morikawa H, Kamon H et al (2006) Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat Immunol 7:971–977

    Article  CAS  PubMed  Google Scholar 

  24. Tabas I (1999) Secretory sphingomyelinase. Chem Phys Lipids 102:123–130

    Article  CAS  PubMed  Google Scholar 

  25. Carpinteiro A, Dumitru C, Schenck M et al (2008) Ceramide-induced cell death in malignant cells. Cancer Lett 264:1–10

    Article  CAS  PubMed  Google Scholar 

  26. Grassme H, Becker KA, Zhang Y et al (2008) Ceramide in bacterial infections and cystic fibrosis. Biol Chem 389:1371–1379

    Article  CAS  PubMed  Google Scholar 

  27. Jana A, Hogan EL, Pahan K (2009) Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278:5–15

    Article  CAS  PubMed  Google Scholar 

  28. Lang F, Gulbins E, Lerche H et al (2008) Eryptosis, a window to systemic disease. Cell Physiol Biochem 22:373–380

    Article  CAS  PubMed  Google Scholar 

  29. Perrotta C, De Palma C, Clementi E (2008) Nitric oxide and sphingolipids: mechanisms of interaction and role in cellular pathophysiology. Biol Chem 389:1391–1397

    Article  CAS  PubMed  Google Scholar 

  30. Smith EL, Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 22:3419–3431

    Article  CAS  PubMed  Google Scholar 

  31. Horinouchi K, Erlich S, Perl DP et al (1995) Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat Genet 10:288–293

    Article  CAS  PubMed  Google Scholar 

  32. Lin T, Genestier L, Pinkoski MJ et al (2000) Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275:8657–8663

    Article  CAS  PubMed  Google Scholar 

  33. Inaba K, Inaba M, Romani N et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    Article  CAS  PubMed  Google Scholar 

  34. Shumilina E, Zahir N, Xuan NT et al (2007) Phosphoinositide 3-kinase dependent regulation of Kv channels in dendritic cells. Cell Physiol Biochem 20:801–808

    Article  CAS  PubMed  Google Scholar 

  35. Wang K, Mahmud H, Foller M et al (2008) Lipopeptides in the triggering of erythrocyte cell membrane scrambling. Cell Physiol Biochem 22:381–386

    Article  CAS  PubMed  Google Scholar 

  36. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    Article  CAS  PubMed  Google Scholar 

  37. Orlov SN, Thorin-Trescases N, Pchejetski D et al (2004) Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i. Pflugers Arch 448:335–345

    Article  CAS  PubMed  Google Scholar 

  38. Rudolf E, Cervinka M (2008) External zinc stimulates proliferation of tumor Hep-2 cells by active modulation of key signaling pathways. J Trace Elem Med Biol 22:149–161

    Article  CAS  PubMed  Google Scholar 

  39. Franklin RB, Costello LC (2009) The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem 106:750–757

    Article  CAS  PubMed  Google Scholar 

  40. Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152

    Article  CAS  PubMed  Google Scholar 

  41. Vallee BL, Gibson JG (1948) The zinc content of normal human whole blood, plasma, leucocytes, and erythrocytes. J Biol Chem 176:445–457

    CAS  PubMed  Google Scholar 

  42. Massadeh A, Gharibeh A, Omari K et al (2010) Simultaneous determination of Cd, Pb, Cu, Zn, and Se in human blood of Jordanian smokers by ICP-OES. Biol Trace Elem Res 133:1–11

    Article  CAS  PubMed  Google Scholar 

  43. Blindauer CA, Harvey I, Bunyan KE et al (2009) Structure, properties, and engineering of the major zinc binding site on human albumin. J Biol Chem 284:23116–23124

    Article  CAS  PubMed  Google Scholar 

  44. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  CAS  PubMed  Google Scholar 

  45. Falcone S, Perrotta C, De Palma C et al (2004) Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3′,5′-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. J Immunol 173:4452–4463

    CAS  PubMed  Google Scholar 

  46. Handley ME, Thakker M, Pollara G et al (2005) JNK activation limits dendritic cell maturation in response to reactive oxygen species by the induction of apoptosis. Free Radic Biol Med 38:1637–1652

    Article  CAS  PubMed  Google Scholar 

  47. Lundqvist A, Nagata T, Kiessling R et al (2002) Mature dendritic cells are protected from Fas/CD95-mediated apoptosis by upregulation of Bcl-X(L). Cancer Immunol Immunother 51:139–144

    Article  CAS  PubMed  Google Scholar 

  48. Leverkus M, Walczak H, McLellan A et al (2000) Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand-mediated apoptosis. Blood 96:2628–2631

    CAS  PubMed  Google Scholar 

  49. Willems F, Amraoui Z, Vanderheyde N et al (2000) Expression of c-FLIP(L) and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells: inhibition by bisindolylmaleimide. Blood 95:3478–3482

    CAS  PubMed  Google Scholar 

  50. Nicolo C, Tomassini B, Rippo MR et al (2001) UVB-induced apoptosis of human dendritic cells: contribution by caspase-dependent and caspase-independent pathways. Blood 97:1803–1808

    Article  CAS  PubMed  Google Scholar 

  51. von Bulow V, Rink L, Haase H (2005) Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3′,5′-cyclic monophosphate. J Immunol 175:4697–4705

    Google Scholar 

  52. Telford WG, Fraker PJ (1995) Preferential induction of apoptosis in mouse CD4+CD8+alpha beta TCRloCD3 epsilon lo thymocytes by zinc. J Cell Physiol 164:259–270

    Article  CAS  PubMed  Google Scholar 

  53. Kolenko VM, Uzzo RG, Dulin N et al (2001) Mechanism of apoptosis induced by zinc deficiency in peripheral blood T lymphocytes. Apoptosis 6:419–429

    Article  CAS  PubMed  Google Scholar 

  54. Mann JJ, Fraker PJ (2005) Zinc pyrithione induces apoptosis and increases expression of Bim. Apoptosis 10:369–379

    Article  CAS  PubMed  Google Scholar 

  55. Weiss JH, Sensi SL (2000) Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci 23:365–371

    Article  CAS  PubMed  Google Scholar 

  56. Weiss JH, Sensi SL, Koh JY (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    Article  CAS  PubMed  Google Scholar 

  57. Ostrakhovitch EA, Cherian MG (2005) Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis 10:111–121

    Article  CAS  PubMed  Google Scholar 

  58. Klein C, Creach K, Irintcheva V et al (2006) Zinc induces ERK-dependent cell death through a specific Ras isoform. Apoptosis 11:1933–1944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the meticulous preparation of the manuscript by Lejla Subasic and Tanja Loch. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 766).

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumilina, E., Xuan, N.T., Schmid, E. et al. Zinc induced apoptotic death of mouse dendritic cells. Apoptosis 15, 1177–1186 (2010). https://doi.org/10.1007/s10495-010-0520-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0520-x

Keywords

Navigation