Skip to main content

Advertisement

Log in

Bovine ephemeral fever virus-induced apoptosis requires virus gene expression and activation of Fas and mitochondrial signaling pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

An Erratum to this article was published on 24 June 2009

Abstract

Although induction of apoptosis by bovine ephemeral fever virus (BEFV) in several cell lines has been previously demonstrated by our laboratory, less information is available on the process of BEFV-induced apoptosis in terms of cellular pathways and specific proteins involved. In order to determine the step in viral life cycle at which apoptosis of infected cells is triggered, chemical and physical agents were used to block viral infection. Treatment of BHK-21 infected cells with ammonium chloride (NH4Cl) or cells infected with UV-inactivated BEFV was seen to abrogate virus apoptosis induction, suggesting that virus uncoating and gene expression are required for the induction of apoptosis. Using soluble death receptors Fc:Fas chimera to block Fas signaling, BEFV-induced apoptosis was inhibited in cells. BEFV infection of BHK-21 cells results in the Fas-dependent activation of caspase 8 and cleavage of Bid. This initiated the dissipation of the membrane potential and the release of cytochrome c but not AIF or Smac/DIABLO from mitochondrial into cytoplasm leading to activation of caspase 9. Combined activation of the death receptor and mitochondrial pathways results in activation of the downstream effecter caspase 3 leading to cleavage of PARP. Fas-mediated BEFV-induced apoptosis could be suppressed by the overexpression of Bcl-2 or by treatment with caspase inhibitors and soluble death receptors Fc:Fas chimera. Taken together, this study provided first evidence demonstrating that BEFV-induced apoptosis requires viral gene expression and occurs through the activation of Fas and mitochondrion-mediated caspase-dependent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brojatsch J, Naughton J, Rolls MM, Zingler K, Young JAT (1996) CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell 87:845–855

    Article  PubMed  CAS  Google Scholar 

  2. Chang CJ, Shih WL, Yu FL, Liao MH, Liu HJ (2004) Apoptosis induced by bovine ephemeral fever virus. J Virol Methods 122:165–170

    Article  PubMed  CAS  Google Scholar 

  3. Clarke P, Meintzer SM, Gibson S, Widmann C, Garrington TP, Johnson GL (2000) Reovirus-induced apoptosis is mediated by TRAIL. J Virol 74:8135–8139

    Article  PubMed  CAS  Google Scholar 

  4. Gadaleta P, Vacotto M, Coulombie F (2002) Vesicular stomatitis virus induces apoptosis at early stages in the viral cycle and does not depend on virus replication. Virus Res 86:87–92

    Article  PubMed  CAS  Google Scholar 

  5. Hanon E, Meyer G, Vanderplasschen A, Dessy-Doize C, Thiry E, Pastoret PP (1998) Attachment but not penetration of bovine herpesvirus 1 is necessary to induce apoptosis in target cells. J Virol 72:7638–7641

    PubMed  CAS  Google Scholar 

  6. Kerr JF, Wyllie RAH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J Cancer 26:239–247

    PubMed  CAS  Google Scholar 

  7. Ramsey-Ewing A, Moss B (1998) Apoptosis induced by a postbinding step of vaccinia virus entry into Chinese hamster ovary cells. Virology 242:138–149

    Article  PubMed  CAS  Google Scholar 

  8. Shih WL, Hsu HW, Liao MH, Lee LH, Liu HJ (2004) Avian reovirus σ C protein induces apoptosis in cultured cells. Virology 321:65–74

    Article  PubMed  CAS  Google Scholar 

  9. Shen Y, Shenk TE (1995) Viruses and apoptosis. Curr Opin Genet Dev 5:105–111

    Article  PubMed  CAS  Google Scholar 

  10. Wang WH, Gregori G, Hullinger RL, Andrisani OM (2004) Sustained activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase pathways by hepatitis B virus × protein mediates apoptosis via induction of Fas/FasL and tumor necrosis factor (TNF) receptor 1/TNF-α expression. Mole Cell Biol 24:10252–10365

    Google Scholar 

  11. Weller M, Schulz JB, Wullner U, Loschmann PA, Klockgether T, Dichgans J (1997) Developmental and genetic regulation of programmed neuronal death. J Neural Trans 50:115–123

    CAS  Google Scholar 

  12. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  PubMed  CAS  Google Scholar 

  13. Reed JC, Jurgensmeier JM, Matsuyama S (1998) Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366:127–137

    Article  PubMed  CAS  Google Scholar 

  14. Yang J, Liu J, Bhalla K, Kim CN, Ibrado AM, Cai J et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  15. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R et al (1998) Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ions. J Cell Biol 143:217–224

    Article  PubMed  CAS  Google Scholar 

  16. Li P, Nijhawaqn D, Budihardjo I, Srinivasula SM, Ahmade M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  17. Luo X, Budihardjo I, Zuo H, Slaughter C, Wang X (1998) Bid, a bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  PubMed  CAS  Google Scholar 

  18. Chulu JLC, Lee LH, Lee YC, Liao MH, Shih WL, Liu HJ (2007) Apoptosis induction by avian reovirus through P53 and mitochondrial pathways. Biochem Biophy Res Commun 356:529–535

    Article  CAS  Google Scholar 

  19. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  20. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  PubMed  CAS  Google Scholar 

  21. Wunner WH, Calisher CH, Dietzgen RG, Jackson AO, Kitajima EW, Lafon M (1995) Rhabdoviridae. In: Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD et al (eds) Virus taxonomy. Sixth report of the international committee on taxonomy of viruses. Springer-Verlag, Vienna & New York, pp 275–288

    Google Scholar 

  22. Hertig C, Pye AD, Hyatt AD, Davis SS, McWilliam SM, Heine HG et al (1996) Vaccinia virus-expressed bovine ephemeral fever virus G but not G (NS) glycoprotein induces neutralizing antibodies and protects against experimental infection. J Gen Virol 77:631–640

    Article  PubMed  CAS  Google Scholar 

  23. Nandi S, Negi BS (1999) Bovine ephemeral fever: a review. Comp Immunol Microbiol Infect Dis 22:81–91

    Article  PubMed  CAS  Google Scholar 

  24. Wang FI, Hsu AM, Huang KJ (2001) Bovine ephemeral fever in Taiwan. J Vet Diagn Invest 13:462–467

    PubMed  CAS  Google Scholar 

  25. Murphy FA, Taylor WP, Mims CA, Whitfield SG (1972) Bovine ephemeral fever in cell culture and mice. Arch Gesamte Virusforsch 38:234–249

    Article  PubMed  CAS  Google Scholar 

  26. Della-Porta AJ, Brown F (1979) The physico–chemical characterization of bovine ephemeral fever virus as a member of the family Rhabdoviridae. J Gen Virol 44:99–112

    Article  PubMed  CAS  Google Scholar 

  27. Walker PJ, Byrne KA, Cybinski DH, Doolan DL, Wang Y (1991) Proteins of bovine ephemeral fever virus. J Gen Virol 72:67–74

    Article  PubMed  CAS  Google Scholar 

  28. Liu HJ, Lee LH, Hsu HW, Kuo LC, Liao MH (2003) Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages. Virology 314:336–349

    Article  PubMed  CAS  Google Scholar 

  29. Yeh CJ, Lin PY, Liao MH, Liu HJ, Lee JW, Chiu SJ, Hsu HY, Shih WL (2008) TNF-α mediates pseudorabies virus-induced apoptosis via the activation of p38 MAPK and JNK/SPAK signaling. Virology 381:55–66

    Article  PubMed  CAS  Google Scholar 

  30. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of Bid by caspase mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  31. Yamada H, Tada-Oikawa S, Uchida A, Kawanishi S (1999) TRAIL causes cleavage of bid by caspase-8 and loss of mitochondrial membrane potential resulting in apoptosis in BJAB cells. Biochem Biophys Res Commun 265:130–133

    Article  PubMed  CAS  Google Scholar 

  32. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B et al (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891

    Article  PubMed  CAS  Google Scholar 

  33. Benedict CA, Banks TA, Ware CF (2003) Death and survival: viral regulation of TNF signaling pathways. Curr Opin Immunol 15:59–65

    Article  PubMed  CAS  Google Scholar 

  34. Liu Y, Zhang X (2007) Murine coronavirus-induced oligodendrocyte apoptosis is mediated through the activation of the Fas signaling pathway. Virology 360:364–375

    Article  PubMed  CAS  Google Scholar 

  35. Clarke P, Beckham JD, Leser JS, Hoyt CC, Tyler KL (2009) Fas-mediated apoptotic signaling in the mouse brain following reovirus infection. J Virol 83:6161–6170

    Article  PubMed  CAS  Google Scholar 

  36. Augestein P, Dunger A, Salzsieder C, Heinke P, Kubernath R, Bahr J et al (2002) Cell surface tracffing of Fas in NTT-1 cells and dissection of surface and total Fas expression. Biochem Biophys Res Commun 290:443–451

    Article  Google Scholar 

  37. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  38. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Article  PubMed  CAS  Google Scholar 

  39. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  40. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  41. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554

    Article  PubMed  CAS  Google Scholar 

  42. Ferri KF, Jacotot E, Blanco J, Este JA, Zamzami N, Susin SA (2000) Apoptosis control in syncytia induced by the HIV type 1-envelop glycoprotein complex: role of mitochondria and caspases. J Exp Med 192:1081–1092

    Article  PubMed  CAS  Google Scholar 

  43. Zhou G, Roizman B (2000) Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J Virol 74:9048–9053

    Article  PubMed  CAS  Google Scholar 

  44. Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A (2002) Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 13:978–988

    Article  PubMed  CAS  Google Scholar 

  45. Jan JT, Chen BH, Ma SH, Liu CI, Tsai HP, Wu HC, Jiang SY, Yang KD, Shaio MF (2000) Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxideanion, and NF-kB are sequentially involved. J Virol 74:8680–8691

    Article  PubMed  CAS  Google Scholar 

  46. Bartz SR, Emerman M (1999) Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 73:1956–1963

    PubMed  CAS  Google Scholar 

  47. Christianne JMB, Hulst MM, Moormann RJM, van Rijn PA, van Oirschot JT (1997) Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J Virol 71:6692–6696

    Google Scholar 

  48. Danen-van Oorschot AA, Van der Eb AJ, Noteborn MH (2000) The chicken anemia virus-derived protein apoptin requires activation of caspase for induction of apoptosis in human tumor cells. J Virol 74:7072–7078

    Article  PubMed  CAS  Google Scholar 

  49. Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B. Genes Dev 7:546–554

    Article  PubMed  CAS  Google Scholar 

  50. Fernández-Arias A, Martínez S, Rodríguez JF (1997) The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J Virol 71:8014–8018

    PubMed  Google Scholar 

  51. Kim H, Lee H, Yun Y (1998) X-gene product of hepatitis B virus induces apoptosis in liver cells. J Biol Chem 273:381–385

    Article  PubMed  CAS  Google Scholar 

  52. Lu JJ, Chen JY, Hsu TY, Yu WC, Su IJ, Yang CS (1996) Induction of apoptosis in epithelial cells by Epstein–Barr virus latent membrane protein 1. J Gen Virol 77:1883–1892

    Article  PubMed  CAS  Google Scholar 

  53. Prikhod’ko EA, Miller LK (1996) Induction of apoptosis by baculovirus transactivator IE1. J Virol 70:7116–7124

    PubMed  Google Scholar 

  54. Sheila AS, Poon B, Song JY, Chen IS (2000) Human immunodeficiency virus type 1 Vpr induces apoptosis through caspase activation. J Virol 74:3105–3111

    Article  Google Scholar 

  55. Shtrichman R, Kleinberger T (1998) Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol 72:2975–2982

    PubMed  CAS  Google Scholar 

  56. Stanley M, Yaegashi N, Tada K, Tanaka N, Sugamura K (1998) Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J Virol 72:3018–3028

    Google Scholar 

  57. Suárez P, Díaz-Guerra M, Prieto C, Esteban M, Castro JM, Nieto A, Ortín J (1996) Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis. J Virol 70:2876–2882

    PubMed  Google Scholar 

  58. Wang CH, Chen YL, Tsao YP, Chen SL (1999) Simian virus 40 T antigen induces p53-independent apoptosis but does not suppress erbB2/neu gene expression in immortalized human epithelial cells. Cancer Lett 137:107–115

    Article  PubMed  CAS  Google Scholar 

  59. Connolly JL, Rodgers SE, Clarke P, Ballard DW, Kerr LD, Tyler KL (2000) Reovirus-induced apoptosis requires activation of transcription factor NF-kB. J Virol 74:2981–2989

    Article  PubMed  CAS  Google Scholar 

  60. Jan JT, Griffin DE (1999) Induction of apoptosis by Sindbis virus occurs at cell entry and does not require virus replication. J Virol 73:10296–10302

    PubMed  CAS  Google Scholar 

  61. Kominsky DJ, Bickel RJ, Tyler KL (2002) Reovirus-induced apoptosis requires both death receptor- and mitochondrial-mediated caspase-dependent pathways of cell death. Cell Death Differ 9:926–933

    Article  PubMed  CAS  Google Scholar 

  62. Schweizer M, Peterhans E (1999) Oxidative stress in cells infected with bovine viral diarrhea virus: a crucial step in the induction of apoptosis. J Gen Virol 80:1147–1155

    PubMed  CAS  Google Scholar 

  63. Gaddy DF, Lyles DS (2007) Oncolytic vesicular stomatitis virus induces apoptosis via signaling through PKR, Fas, and Daxx. J Virol 81:2792–2804

    Article  PubMed  CAS  Google Scholar 

  64. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  65. Srinivasula SM, Ahmad M, Fermandes-Alnemri T, Litwack G, Alnemri ES (1996) Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE like cysteine proteases. Proc Natl Acad Sci 93:14486–14491

    Article  PubMed  CAS  Google Scholar 

  66. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:255–263

    Article  Google Scholar 

  67. Chipuk JE, Green DR (2005) Do inducers of apoptosis trigger caspase-independent cell death. Nat Rev Mol Cell Biol 6:268–275

    Article  PubMed  CAS  Google Scholar 

  68. Kroemer G, Martin SJ (2005) Caspase-indepent cell death. Nat Med 11:725–730

    Article  PubMed  Google Scholar 

  69. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  70. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274:22532–22538

    Article  PubMed  CAS  Google Scholar 

  71. Deng Y, Lin Y, Wu X (2002) Trail-induced apoptosis requires Bax-dependent mitochondrial release of smac/DIABLO. Genes Dev 16:33–45

    Article  PubMed  CAS  Google Scholar 

  72. Zhang XD, Zhang XY, Gray CP, Nguyen T, Hersey P (2001) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res 61:7339–7348

    PubMed  CAS  Google Scholar 

  73. Sun XM, Bratton SB, Butterworth M, Mavfarlane M, Cohen GM (2002) Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem 277:11345–11351

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants awarded to Dr. Hung J. Liu by the National Science Council (NSC 95-2313-B-020-009-MY3 and NSC 97-2313-B-020-003-MY3), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Jeng Liu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10495-009-0377-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CH., Shih, WL., Lin, FL. et al. Bovine ephemeral fever virus-induced apoptosis requires virus gene expression and activation of Fas and mitochondrial signaling pathway. Apoptosis 14, 864–877 (2009). https://doi.org/10.1007/s10495-009-0371-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0371-5

Keywords

Navigation