Skip to main content
Log in

Enhancement of radiation-induced apoptosis of human lymphoma U937 cells by sanazole

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Sanazole has been tested clinically as a hypoxic cell radiosensitizer. In this study, we determined whether sanazole enhances the radiation-induced apoptosis of human lymphoma U937 cells. Our results revealed that, compared with 10 mM sanazole or radiation alone, the combination of both resulted in a significant enhancement of apoptosis after 6 h, which was evaluated on the basis of DNA fragmentation, morphological changes, and phosphatidylserine externalization. Sanazole alone enhanced intracellular superoxide and hydrogen peroxide formation, which further increased when the cells were irradiated. Significant enhancement of Fas externalization, loss of mitochondrial membrane potential (MMP), and activation of caspase-3 and caspase-8 were observed after the combined treatment. Moreover, this combination could also enhance Bid activation, reduction of Hsp70 expression level and release of cytochrome c from the mitochondria to the cytosol. An immediate increase in the intracellular Ca2+ concentration ([Ca2+]i) was observed after the combined treatment. These results suggest that the intracellular superoxide and peroxide generated by sanazole might be involved in the enhancement of radiation-induced apoptosis, and that these effects are associated with modulation of the Fas-mitochondria-caspase-dependent pathway, an increase in [Ca2+]i, and a decrease in the Hsp70 expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szostak MJ, Kyprianou N (2000) Radiation-induced apoptosis: predictive and therapeutic significance in radiotherapy of prostate cancer. Oncol Rep 7:699–706

    CAS  PubMed  Google Scholar 

  2. Garzotto M, Haimovitz-Friedman A, Liao WC et al (1999) Reversal of radiation resistance in LNCaP cells by targeting apoptosis through ceramide synthase. Cancer Res 59:5194–5201

    CAS  PubMed  Google Scholar 

  3. Lin X, Zhang F, Bradbury CM et al (2003) 2-Deoxy-d-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res 63:3413–3417

    CAS  PubMed  Google Scholar 

  4. Belka C, Jendrossek V, Pruschy M, Vink S, Verheij M, Budach W (2004) Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int J Radiat Oncol Biol Phys 58:542–554. doi:10.1016/j.ijrobp.2003.09.067

    Article  CAS  PubMed  Google Scholar 

  5. Sugie C, Shibamoto Y, Ito M et al (2005) Reevaluation of the radiosensitizing effects of sanazole and nimorazole in vitro and in vivo. J Radiat Res 46:453–459. doi:10.1269/jrr.46.453

    Article  CAS  PubMed  Google Scholar 

  6. Shibamoto Y, Sakano K, Kimura R et al (1986) Radiosensitization in vitro and in vivo by 3-nitrotriazoles. Int J Radiat Oncol Biol Phys 12:1063–1066

    Article  CAS  PubMed  Google Scholar 

  7. Dobrowsky W, Huigol NG, Jayatilake RS et al (2007) AK-2123 (Sanazol) as a radiation sensitizer in the treatment of stage III cervical cancer: results of an IAEA multicentre randomised trial. Radiother Oncol 82:24–29. doi:10.1016/j.radonc.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  8. Huilgol NG, Chatterjee N, Mehta AR (1996) An overview of the initial experience with AK-2123 as a hypoxic cell sensitizer with radiation in the treatment of advanced head and neck cancers. Int J Radiat Oncol Biol Phys 34:1121–1124. doi:10.1016/0360-3016(95)02181-7

    Article  CAS  PubMed  Google Scholar 

  9. Ullal SD, Shenoy KK, Pai MR et al (2006) Safety and radiosensitizing efficacy of sanazole (AK 2123) in oropharyngeal cancers: randomized controlled double blind clinical trial. Indian J Cancer 43:151–155

    Article  CAS  PubMed  Google Scholar 

  10. Wardman P (2007) Chemical radiosensitizers for use in radiotherapy. Clin Oncol 19:397–417. doi:10.1016/j.clon.2007.03.010

    Article  CAS  Google Scholar 

  11. Pasupathy K, Nair CK, Kagiya TV (2001) Effect of a hypoxic radiosensitizer, AK 2123 (Sanazole), on yeast Saccharomyces cerevisiae. J Radiat Res (Tokyo) 42:217–227. doi:10.1269/jrr.42.217

    Article  CAS  Google Scholar 

  12. Aoki M, Furusawa Y, Shibamoto Y, Kobayashi A, Tsujitani M (2002) Effect of a hypoxic cell sensitizer doranidazole on the radiation-induced apoptosis of mouse L5178Y lymphoma cells. J Radiat Res 43:161–166. doi:10.1269/jrr.43.161

    Article  CAS  PubMed  Google Scholar 

  13. Rajagopalan R, Kagiya TV, Nair CK (2003) Radiosensitizer sanazole (AK-2123) enhances gamma-radiation-induced apoptosis in murine fibrosarcoma. J Radiat Res 44:359–365. doi:10.1269/jrr.44.359

    Article  CAS  PubMed  Google Scholar 

  14. Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    CAS  PubMed  Google Scholar 

  15. Zhao QL, Fujiwara Y, Kondo T (2006) Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 40:1131–1143. doi:10.1016/j.freeradbiomed.2005.10.064

    Article  CAS  PubMed  Google Scholar 

  16. van Heerde WL, de Groot PG, Reutelingsperger CP (1995) The complexity of the phospholipid binding protein Annexin V. Thromb Haemost 73:172–179

    PubMed  Google Scholar 

  17. Gorman A, McGowan A, Cotter TG (1997) Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Lett 404:27–33. doi:10.1016/S0014-5793(97)00069-0

    Article  CAS  PubMed  Google Scholar 

  18. Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355. doi:10.1006/abbi.1993.1222

    Article  CAS  PubMed  Google Scholar 

  19. Datta R, Kojima H, Yoshida K, Kufe D (1997) Caspase-3-mediated cleavage of protein kinase C θ in induction of apoptosis. J Biol Chem 272:20317–20320. doi:10.1074/jbc.272.33.20317

    Article  CAS  PubMed  Google Scholar 

  20. Cui ZG, Kondo T, Matsumoto H (2006) Enhancement of apoptosis by nitric oxide released from alpha-phenyl-tert-butyl nitrone under hyperthermic conditions. J Cell Physiol 206:468–476. doi:10.1002/jcp.20482

    Article  CAS  PubMed  Google Scholar 

  21. Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466:6–10. doi:10.1016/S0014-5793(99)01761-5

    Article  CAS  PubMed  Google Scholar 

  22. Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475. doi:10.1038/35019501

    Article  CAS  PubMed  Google Scholar 

  23. Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483. doi:10.1038/35019510

    Article  CAS  PubMed  Google Scholar 

  24. Salganik RI (2001) The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 20:464S–472S (discussion 473S–475S)

    Article  CAS  PubMed  Google Scholar 

  25. Singh SV, Srivastava SK, Choi S et al (2005) Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280:19911–19924. doi:10.1074/jbc.M412443200

    Article  CAS  PubMed  Google Scholar 

  26. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33. doi:10.1080/09553009414550041

    Article  CAS  PubMed  Google Scholar 

  27. Wallace SS (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150:S60–S79. doi:10.2307/3579809

    Article  CAS  PubMed  Google Scholar 

  28. Cui ZG, Kondo T, Ogawa R et al (2004) Enhancement of radiation-induced apoptosis by 6-formylpterin. Free Radic Res 38:363–373. doi:10.1080/1071576042000191754

    Article  CAS  PubMed  Google Scholar 

  29. Schepetkin IA, Cherdyntseva NV, Kagiya VT (2001) Sanazole as substrate of xanthine oxidase and microsomal NADPH/cytochrome P450 reductase. Pathophysiology 8:119–127. doi:10.1016/S0928-4680(01)00073-6

    Article  CAS  PubMed  Google Scholar 

  30. Chen M, Wang J (2002) Initiator caspases in apoptosis signaling pathways. Apoptosis 7:313–319. doi:10.1023/A:1016167228059

    Article  CAS  PubMed  Google Scholar 

  31. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365. doi:10.1016/S0092-8674(00)81874-7

    Article  CAS  PubMed  Google Scholar 

  32. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  33. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501. doi:10.1016/S0092-8674(00)81590-1

    Article  CAS  Google Scholar 

  34. He L, Fox MH (1997) Variation of heat shock protein 70 through the cell cycle in HL-60 cells and its relationship to apoptosis. Exp Cell Res 232:64–71. doi:10.1006/excr.1997.3494

    Article  CAS  PubMed  Google Scholar 

  35. Brondani Da Rocha A, Regner A, Grivicich I et al (2004) Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines. Int J Oncol 25:777–785

    CAS  PubMed  Google Scholar 

  36. Nitobe J, Yamaguchi S, Okuyama M et al (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128. doi:10.1016/S0008-6363(02)00646-6

    Article  CAS  PubMed  Google Scholar 

  37. Strasser A, Newton K (1999) FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int J Biochem Cell Biol 31:533–537. doi:10.1016/S1357-2725(99)00003-5

    Article  CAS  PubMed  Google Scholar 

  38. Yin XM (2000) Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 10:161–167. doi:10.1038/sj.cr.7290045

    Article  CAS  PubMed  Google Scholar 

  39. Asada S, Fukuda K, Nishisaka F, Matsukawa M, Hamanisi C (2001) Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm Res 50:19–23. doi:10.1007/s000110050719

    Article  CAS  PubMed  Google Scholar 

  40. Macho A, Hirsch T, Marzo I et al (1997) Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158:4612–4619

    CAS  PubMed  Google Scholar 

  41. Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751. doi:10.1074/jbc.271.12.6746

    Article  CAS  PubMed  Google Scholar 

  42. Nicotera P, Bellomo G, Orrenius S (1992) Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32:449–470. doi:10.1146/annurev.pa.32.040192.002313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, DY., Zhao, QL., Wei, ZL. et al. Enhancement of radiation-induced apoptosis of human lymphoma U937 cells by sanazole. Apoptosis 14, 655–664 (2009). https://doi.org/10.1007/s10495-009-0329-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0329-7

Keywords

Navigation