Skip to main content
Log in

Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We studied the alterations of dying oocytes in 1–28 days old rats using TUNEL method, immunolocalizations of active caspase 3, lamp1, localization of acid phosphatase, and DAPI staining. All procedures were performed in adjacent sections of each oocyte. In most dying oocytes exist simultaneously features of apoptosis as active caspase 3 and DNA breaks, and a large increase of lamp1 and acid phosphatase characteristic of autophagy. Large clumps of compact chromatin and membrane blebbing were absent. Electron microscope observations demonstrated the presence of small clear vesicles and autophagolysosomes. All these features indicate that a large number of oocytes are eliminated by a process sharing features of apoptosis and autophagy. In dying oocytes of new born rats the markers of apoptosis predominate over those of autophagy. However, fragmentation and apoptotic bodies were not found. These features suggest that in different cytophysiological conditions the processes of cell death may be differently modulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Graph 1
Graph 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Graph 3
Graph 4
Graph 5
Graph 6
Graph 7
Graph 8

Similar content being viewed by others

References

  1. Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101. doi:10.1016/S0074-7696(08)61524-7

    Article  PubMed  CAS  Google Scholar 

  2. Morita Y, Tilly JL (1999) Oocyte apoptosis: like sand through an hourglass. Dev Biol 213:1–17. doi:10.1006/dbio.1999.9344

    Article  PubMed  CAS  Google Scholar 

  3. Tilly JL, Robles R (1999) Apoptosis and its impact in clinical reproductive medicine. In: Molecular biology in reproductive medicine. Parthenon, New York, pp 79–101

  4. Murdoch WJ (2000) Proteolytic and cellular death mechanisms in ovulatory ovarian rupture. Biol Sings Recept 9:102–114

    Article  CAS  Google Scholar 

  5. Rueda BR, Hoyer PB, Hamemlk DL, Tilly JL (1997) Potential regulators of physiological cell death in the corpus luteum. In: Cell death in reproductive physiology. Springer-Verlag, New York, pp 161–181

  6. Garrett WM, Guthrie HD (1999) Expression of Bcl-2 and 3-hydroxysteroid dehydrogenase protein during oocyte and follicle development in foetal and post-natal pig ovaries. Reprod Fertil Dev 11:463–470. doi:10.1071/RD00003

    Article  PubMed  CAS  Google Scholar 

  7. Kerr JFR, Willie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics B. J Cancer 26:239–257

    CAS  Google Scholar 

  8. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510. doi:10.1038/nrm1666

    Article  PubMed  CAS  Google Scholar 

  9. Aki T, Yamagychi K, Fujimiya T, Mizukami Y (2003) Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2. Oncogene 22:8529–8535

    Article  PubMed  CAS  Google Scholar 

  10. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the antiestrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17:1595–1607. doi:10.1093/carcin/17.8.1595

    Article  PubMed  CAS  Google Scholar 

  11. Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266. doi:10.1002/tera.1420070306

    Article  Google Scholar 

  12. Clarke PGH (1990) Development cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213. doi:10.1007/BF00174615

    CAS  Google Scholar 

  13. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906. doi:10.1038/sj.onc.1207521

    Article  PubMed  CAS  Google Scholar 

  14. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477. doi:10.1016/S1534-5807(04)00099-1

    Article  PubMed  CAS  Google Scholar 

  15. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995. doi:10.1126/science.1099993

    Article  PubMed  CAS  Google Scholar 

  16. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721. doi:10.1126/science.290.5497.1717

    Article  PubMed  CAS  Google Scholar 

  17. Lu Y, Lenardo MJ, Baechrecke EH (2004) Autophagy and caspases: a new cell death program. Cell Cycle 3:1124–1126

    Google Scholar 

  18. Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581. doi:10.1038/sj.cdd.4400852

    Article  PubMed  CAS  Google Scholar 

  19. Fukuda M (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis and intracellular trafficking. J Biol Chem 266:21327

    PubMed  CAS  Google Scholar 

  20. Sawada R, Jardine KA, Fukuda M (1993) The genes of major lysosomal membrane glycoproteins lamp1 and lamp2. The 5′-flanking sequence of lamp2 gene and comparison of exon organization in two genes. J Biol Chem 268:13010

    PubMed  CAS  Google Scholar 

  21. Perez GI, Tao XJ, Tilly JL (1999) Fragmentation and death (a. k. a. apoptosis) of ovulated oocytes. Mol Hum Reprod 5:414–420. doi:10.1093/molehr/5.5.414

    Article  PubMed  CAS  Google Scholar 

  22. Perez GI, Jurisicova A, Matikainen T, Moriyama T, Kim MR, Takai Y et al (2005) A central role for ceramide in the age-related acceleration of apoptosis in the female germline. FASEB J 19:860–862

    PubMed  CAS  Google Scholar 

  23. Ortiz R, Echeverría OM, Salgado R, Escobar ML, Vázquez-Nin GH (2006) Fine structural and cytochemical analysis of the processes of cell death of oocytes in atretic follicles in new born and prepubertal rats. Apoptosis 11:25–37. doi:10.1007/s10495-005-3347-0

    Article  PubMed  CAS  Google Scholar 

  24. Guide Line for the Care and Use of Laboratory Animals (1996) The National Academies Press, Washington, DC, pp 1–140

  25. Gomori G (1950) An improved histochemical technic for acid phosphatase. Stain Technol 25:81

    Google Scholar 

  26. Chen P, Abrams JM (2000) Drosophila apoptosis and Bcl-2 genes: outliers fly in. J Cell Biol 148:625–627

    Article  PubMed  CAS  Google Scholar 

  27. Jolly PD, Smith PR, Heath DA, Hudson NL, Lun S, Still LA et al (1997) Morphological evidence of apoptosis and prevalence of apoptotic versus mitotic cells in the membrane granulose of ovarian follicles during spontaneous and induced atresia in ewes. Biol Reprod 56:837–846. doi:10.1095/biolreprod56.4.837

    Article  PubMed  CAS  Google Scholar 

  28. Hughes FM Jr, Gecospe WC (1991) Biochemical identification of apoptosis (programmed cell death) in granulos cells. Evidence form a potencial mechanism undrerlying follicular atresia. Endocrinology 129:2415–2422

    Article  PubMed  CAS  Google Scholar 

  29. Tilly JL (1997) Apoptosis and the ovary: a fashionable trend of food for thought? Fertil Steril 67:226–228. doi:10.1016/S0015-0282(97)81901-2

    Article  PubMed  CAS  Google Scholar 

  30. Fenwick MA, Hurse PR (2002) Inmmunohistochemical localization of active caspase 3 in the mouse ovary. Growth and atresia of small follicles. Reproduction 124:659–663. doi:10.1530/rep.0.1240659

    Article  PubMed  CAS  Google Scholar 

  31. Matilkainen T, Perez GI, Zheng TS, Kluzak TR, Rueda BR, Flavell RA et al (2001) Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary. Endocrinology 142:2468–2480. doi:10.1210/en.142.6.2468

    Article  Google Scholar 

  32. Quirk SM, Cowan RG, Harman RM (2005) Progesterone receptor and the cell cycle modulate apoptosis in granulose cells. Endocrinology 145:5033–5043. doi:10.1210/en.2004-0140

    Article  CAS  Google Scholar 

  33. D’Herde K, De Prest B, Roels F (1996) Subtypes of active cell death in the granulosa of ovarian atretic follicles in the quail (Coturnix coturnix japónica). Reprod Nutr Dev 36:175–189. doi:10.1051/rnd:19960203

    Article  PubMed  CAS  Google Scholar 

  34. Kovacs J, Forgo V, Peczely P (1992) The fine structure of the follicular cells of the domestic goose. Cell Tissue Res 267:561–569. doi:10.1007/BF00319379

    Article  PubMed  CAS  Google Scholar 

  35. Takeda M, Shirato I, Kobayashi M, Endou H (1999) Hydrogen peroxide induces necrosis, apoptosis, oncosis and apoptotic oncosis of mouse terminal proximal straight tubule cells. Nephron 81:234–238. doi:10.1159/000045282

    Article  PubMed  CAS  Google Scholar 

  36. Martin DH, Baehrecke AH (2004) Caspase function in autophagic cell death in Drosophila. Development 131:275–284

    Article  PubMed  CAS  Google Scholar 

  37. Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040. doi:10.1128/MCB.25.3.1025-1040.2005

    Article  PubMed  CAS  Google Scholar 

  38. Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141. doi:10.1016/S0300-9084(02)01369-X

    Article  PubMed  CAS  Google Scholar 

  39. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. doi:10.1038/nature04724

    Article  PubMed  CAS  Google Scholar 

  40. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15:171–182. doi:10.1038/sj.cdd.4402233

    Article  PubMed  CAS  Google Scholar 

  41. Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Bachrecke EHN (2003) Genome-wide analysis of steroid an aradiation-triggered programmed cell death in Drosophila. Curr Biol 13:350–357

    Article  PubMed  CAS  Google Scholar 

  42. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752. doi:10.1038/nrm2239

    Article  PubMed  CAS  Google Scholar 

  43. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of atg4. EMBO J 26:1749–1760. doi:10.1038/sj.emboj.7601623

    Article  PubMed  CAS  Google Scholar 

  44. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228. doi:10.1038/ncb1192

    Article  PubMed  CAS  Google Scholar 

  45. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939. doi:10.1016/j.cell.2005.07.002

    Article  PubMed  CAS  Google Scholar 

  46. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205. doi:10.1016/j.molcel.2006.12.009

    Article  PubMed  CAS  Google Scholar 

  47. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  48. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082. doi:10.1073/pnas.2436255100

    Article  PubMed  CAS  Google Scholar 

  49. Yoshimori T (2004) Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313:453–458. doi:10.1016/j.bbrc.2003.07.023

    Article  PubMed  CAS  Google Scholar 

  50. Shunsuke K, Takeshi N, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein tandem fluorescent-tagged LC3. Autophagy 3(5):452–460

    Google Scholar 

  51. Carmo-Fonseca M, Mendes-Suares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2:E107–E112. doi:10.1038/35014078

    Article  PubMed  CAS  Google Scholar 

  52. Lam YW, Trinkle-Mulcahy L, Lamond AI (2005) The nucleolus. J Cell Sci 118:1335–1337. doi:10.1242/jcs.01736

    Article  PubMed  CAS  Google Scholar 

  53. Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129(1):13–31. doi:10.1007/s00418-007-0359-6

    Article  PubMed  CAS  Google Scholar 

  54. Visintin R, Amon A (2000) The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 12:372–377. doi:10.1016/S0955-0674(00)00102-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PAPIIT IN211905-3, PAPIIT IN203308-3, CONACYT 36450-N. We thank Silvia Juárez and Ernestina Ubaldo for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Vázquez-Nin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobar, M.L., Echeverría, O.M., Ortíz, R. et al. Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis 13, 1253–1266 (2008). https://doi.org/10.1007/s10495-008-0248-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0248-z

Keywords

Navigation