Skip to main content

Advertisement

Log in

Death-associated protein 5 (DAP5/p97/NAT1) contributes to retinoic acid-induced granulocytic differentiation and arsenic trioxide-induced apoptosis in acute promyelocytic leukemia

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

All-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) induce differentiation and apoptosis in acute promyelocytic leukemia (APL) cells. Here we investigated the role and regulation of death-associated protein-5 (DAP5/p97/NAT1), a novel inhibitor of translational initiation, in APL cell differentiation and apoptosis. We found that ATRA markedly induced DAP5/p97 protein and gene expression and nuclear translocation during terminal differentiation of APL (NB4) and HL60 cells but not differentiation-resistant cells (NB4.R1 and HL60R), which express very low levels of DAP5/p97. At the differentiation inducing concentrations, ATO (<0.5 μM), dimethyl sulfoxide, 1,25-dihydroxy-vitamin-D3, and phorbol-12-myristate 13-acetate also significantly induced DAP5/p97 expression in NB4 cells. However, ATO administered at apoptotic doses (1–2 μM) induced expression of DAP5/p86, a proapoptotic derivative of DAP5/p97. ATRA and ATO-induced expression of DAP5/p97 was associated with inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Furthermore, DAP5/p97 expression was upregulated by inhibition of the PI3K/Akt/mammalian target of rapamycin (mTOR) pathway via LY294002 and via rapamycin. Finally, knockdown of DAP5/p97 expression by small interfering RNA inhibited ATRA-induced granulocytic differentiation and ATO-induced apoptosis. Together, our data reveal new roles for DAP5/p97 in ATRA-induced differentiation and ATO-induced apoptosis in APL and suggest a novel regulatory mechanism by which PI3K/Akt/mTOR pathway inhibition mediates ATRA- and ATO-induced expression of DAP5/p97.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

APL:

Acute promyelocytic leukemia

ATO:

Arsenic trioxide

ATRA:

All-trans-retinoic acid

DAP5:

Death-associated protein 5

DMSO:

Dimethyl sulfoxide

eIF2:

Eukaryotic initiation factor 2

eIF4E:

Eukaryotic initiation factor 4E

FACS:

Fluorescence-activated cell sorting

FITC:

Fluorescein isothiocyanate

IRES:

Internal ribosome entry site

MTOR:

Mammalian target of rapamycin

PBS:

Phosphate-buffered saline

PDCD4:

Programmed cell death 4 protein

PI3K:

Phosphatidylinositol 3-kinase

PMA:

Phorbol-12-myristate 13-acetate

PML:

Promyelocytic leukemia

RARα:

Retinoic acid receptor-α

SiRNA:

Small interfering RNA

References

  1. Lwenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341:1051–1062

    Article  Google Scholar 

  2. Bennett JM, Young ML, Andersen JW, Cassileth PA, Tallman MS, Paetta E et al (1999) Long-term survival in acute myeloid leukemia: the Eastern Cooperative Oncology Group experience. Cancer 80(11 suppl):2205–2209

    Google Scholar 

  3. Melnick A, Licht JD (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93:3167–3215

    PubMed  CAS  Google Scholar 

  4. Breitman TR, Collins SJ, Keene BR (1981) Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood 57:1000–1004

    PubMed  CAS  Google Scholar 

  5. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R (1991) NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77(5):1080–1086

    PubMed  CAS  Google Scholar 

  6. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L et al (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    PubMed  CAS  Google Scholar 

  7. Fenaux P, Le Deley MC, Castaigne S et al (1993) Effect of all-trans retinoic acid in newly diagnosed acute promyelocytic leukemia: results of a multicenter randomized trial. European APL 91 Group. Blood 82:3241–3249

    PubMed  CAS  Google Scholar 

  8. Tallman MS, Andersen JW, Schiffer CA et al (2002) All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood 100:4298–4302

    Article  PubMed  CAS  Google Scholar 

  9. Altucci L, Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1(3):181–193

    Article  PubMed  CAS  Google Scholar 

  10. Warrell RP Jr, Frankel SR, Miller WH Jr et al (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324:1385–1393

    PubMed  Google Scholar 

  11. Chomienne C, Ballerini P, Huang M, Cornic Chomienne C, Fenaux P, Degos L (1996) Retinoid differentiation therapy in promyelocytic leukemia. FASEB J 10:1025–1030

    PubMed  CAS  Google Scholar 

  12. Mathews V, George B, Lakshmi KM, Viswabandya A, Bajel A, Balasubramanian P et al (2006) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 107:2627–2632

    Article  PubMed  CAS  Google Scholar 

  13. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ et al (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348

    Article  PubMed  CAS  Google Scholar 

  14. Gianni M, Koken MH, Chelbi-Alix MK, Benoit G, lanotte, Chen Z et al (1998) Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis. Blood 91:4300–4310

    PubMed  CAS  Google Scholar 

  15. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94(6):2102–11

    PubMed  CAS  Google Scholar 

  16. Gaboli M, Gandini D, Delva L, Pandolfi PP (1998) Acute promyelocytic leukemia as a model for cross-talk between interferon and retinoic acid pathways: from molecular biology to clinical applications. Leuk Lymphoma 30:11–22

    PubMed  CAS  Google Scholar 

  17. Benoit G, Roussel M, Pendino F, Ségal-Bendirdjian E, Lanotte M (2001) Orchestration of multiple arrays of signal cross-talk and combinatorial interactions for maturation and cell death: another vision of t(15;17) preleukemic blast and APL-cell maturation. Oncogene 20(49):7161–777

    Article  PubMed  CAS  Google Scholar 

  18. Tsiftoglu AS, Pappas IS, Vizirianakis IS (2003) Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100(3):257–290

    Article  CAS  Google Scholar 

  19. Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD (2000) Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 14(6):973–990

    Article  PubMed  CAS  Google Scholar 

  20. Casini T, Pelicci PG (1999) A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest. Oncogene 18:3235–3243

    Article  PubMed  CAS  Google Scholar 

  21. Meani N, Minardi S, Licciulli S, Gelmetti V, Coco FL, Nervi C et al (2005) Molecular signature of retinoic acid treatment in acute promyelocytic leukemia. Oncogene 24:3358–3368

    Article  PubMed  CAS  Google Scholar 

  22. Krichevsky AM, Metzer E, Rosen H (1999) Translational control of specific genes during differentiation of HL-60 cells. J Biol Chem 274:14295–14305

    Article  PubMed  CAS  Google Scholar 

  23. Grolleau A, Sonenberg N, Wietzerbi J, Beretta L (1999) Differential regulation of 4E-BP1 and 4E-BP2, two repressors of translation initiation, during human myeloid cell differentiation. J Immunol 162:3491–3497

    PubMed  CAS  Google Scholar 

  24. Gerlitz G, Jagus R, Elroy-Stein O (2002) Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. Eur J Biochem 269(11):2810–2819

    Article  PubMed  CAS  Google Scholar 

  25. Zheng PZ, Wang KK et al (2005) Systems analysis of transcriptome and proteome in retinoic acid_arsenic trioxide-induced cell differentiation_apoptosis of promyelocytic leukemia. PNAS 102(21):7653–7658

    Article  PubMed  CAS  Google Scholar 

  26. Weber JA, Gay CV (2001) Expression of translation initiation factor IF2 is regulated during osteoblast differentiation. J Cell Biochem 81(4):700–714

    Article  PubMed  CAS  Google Scholar 

  27. Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV (1993) Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 in response to growth induction by c-myc. Proc Natl Acad Sci USA 90:6175–6178

    Article  PubMed  CAS  Google Scholar 

  28. Suzuki T, Koyama Y, Ichikawa H, Tsushima K, Abe K, Hayakawa S et al (2005) 1,25-Dihydroxyvitamin D3 suppresses gene expression of eukaryotic translation initiation factor 2 in human promyelocytic leukemia HL-60 cells. Cell Struct Funct 30:1–6

    Article  PubMed  CAS  Google Scholar 

  29. Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236:747–771

    Article  PubMed  CAS  Google Scholar 

  30. Rosenwald IB (1996) Upregulatation expression of the genes encoding translation initiation factors eIF-4E and eIF-2alpha in transformed cells. Cancer Lett 102:113–123

    Article  PubMed  CAS  Google Scholar 

  31. Willis A (1999) Translational control of growth factor and proto-oncogene expression. Int J Biochem Cell Biol 31:73–86

    Article  PubMed  CAS  Google Scholar 

  32. Brostrom CO, Brostrom MA (1998) Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58:79–125

    Article  PubMed  CAS  Google Scholar 

  33. Clemens MJ (2001) Initiation factor eIF2alpha phosphorylation in stress responses and apoptosis. Prog Mol Subcell Biol 27:57–89

    PubMed  CAS  Google Scholar 

  34. Clemens MJ (2004) Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23(18):3180–3188

    Article  PubMed  CAS  Google Scholar 

  35. Perrotti D, Calabretta B (2002) Post-transcriptional mechanisms in BCR/ABL leukemogenesis: role of shuttling RNA-binding proteins. Oncogene 21:8577–8583

    Article  PubMed  CAS  Google Scholar 

  36. Imataka H, Sonenberg N (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17(12):6940–6947

    PubMed  CAS  Google Scholar 

  37. Imataka H, Olsen HS, Sonenberg N (1997) A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J 16(4):817–825

    Article  PubMed  CAS  Google Scholar 

  38. Yamanaka S, Poksay KS, Arnold KS, Inneraruty TL (1997) A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev 11(3):321–333

    Article  PubMed  CAS  Google Scholar 

  39. Henis-Korenblit S, Strumpf NL, Goldstaub D, Kimchi A (2000) A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol Cell Biol 20(2):496–506

    Article  PubMed  CAS  Google Scholar 

  40. Henis-Korenblit S, Shani G, Sines T, Marash L, Shohat G, Kimchi A (2002) The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc Natl Acad Sci USA 99(8):5400

    Article  PubMed  CAS  Google Scholar 

  41. Marash L, Kimchi A (2005) DAP5 and IRES-mediated translation during programmed cell death. Cell Death Differ 12(6):554–562

    Article  PubMed  CAS  Google Scholar 

  42. Nevins TA, Harder ZM, Korneluk RG, Holcik M (2003) Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J Biol Chem 278(6):3572–3579

    Article  PubMed  CAS  Google Scholar 

  43. Yamanaka S, Zhang XY, Maeda M, Miura K, Wang S, Farese RV Jr et al (2000) Essential role of NAT1/p97/DAP5 in embriyonic differentiation and the retinoic acid pathway. EMBO J 19:5533–5541

    Article  PubMed  CAS  Google Scholar 

  44. Harris MN, Ozpolat B, Abdi F, Gu S, Legler A, Mawuenyega KG et al (2004) Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia. Blood 104(5):1314–1323

    Article  PubMed  CAS  Google Scholar 

  45. Ozpolat B, Akar A, Baria M, Lopez Berestein G. PKCδ regulates eukaryotic Initiation factor eIF2α through PKR during retinoic acid-induced myeloid cell differentiation (submitted)

  46. Ozpolat B, Akar U, Steiner M, Zorrilla-Calancha I, Tirado-Gomez M, Colburn N et al (2007) Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells. Mol Cancer Res 5(1):95–108

    Article  PubMed  CAS  Google Scholar 

  47. Ozpolat B, Mehta K, Tari A, Lopez-Berestein G (2002) All-trans-retinoic acid-induced expression and regulation of retinoic acid 4-hydroxylase (CYP26) in human promyelocytic leukemia. Am J Hematol 70:39–47

    Article  PubMed  CAS  Google Scholar 

  48. Diaz B, Lopez-Berestein G (2000) A distinct element involved in lipopolysaccharide activation of the tumor necrosis factor-alpha promoter in monocytes. J Interferon Cytokine Res 20:741–748

    Article  PubMed  CAS  Google Scholar 

  49. Cai X, Shen YL, Zhu Q, Jia PM, Yu Y, Zhou L et al (2000) Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia 14:262–270

    Article  PubMed  CAS  Google Scholar 

  50. Jing Y, Wang L, Xia L, Chen GQ, Miller WH, Waxman S (2001) Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood 97(1):264–269

    Article  PubMed  CAS  Google Scholar 

  51. Dever TE (2002) Gene specific regulation of by general transcription factors. Cell 108:545–556

    Article  PubMed  CAS  Google Scholar 

  52. Donze O, Jagus R, Koromilas AE, Hershey JWB, Sonenberg N (1995) Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J 14:3828–3834

    PubMed  CAS  Google Scholar 

  53. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’ cap. Nature 345:544–547

    Article  PubMed  CAS  Google Scholar 

  54. DeBenedetti A, Rhoads RE (1990) Overexpression of eIF-4E in HeLa cells results in aberrant growth and morphology. Proc Natl Acad Sci USA 87:8212–8216

    Article  CAS  Google Scholar 

  55. De Benedetti A, Harris A (1999) eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 31(1):59–72

    Article  PubMed  Google Scholar 

  56. Fukuchi-Shimogori T, Ishii I, Kashiwagi KHM, Ekimoto H, Igarashi K (1997) Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res 57:5041–5044

    PubMed  CAS  Google Scholar 

  57. Clemens MJ, Bommer UA (1999) Translational control: the cancer connection. Int J Biochem Cell Biol 31:1–23

    Article  PubMed  CAS  Google Scholar 

  58. Rosenwald IB (1996) Upregulated expression of the genes encoding translation initiation factors eIF-4E and eIF-2alpha in transformed cells. Cancer Lett 102:113–123

    Article  PubMed  CAS  Google Scholar 

  59. Shen ZX, Shi ZZ, Fang J, Gu BW, Li JM, Zhu YM et al (2004) All-trans retinoic acid/ATO combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 101(15):5328–5335

    Article  PubMed  CAS  Google Scholar 

  60. Bhatia M, Kirkland JB, Meckling-Gill KA (1994) M-CSF and 1,25 dihydroxy vitamin D3 synergize with 12-O-tetradecanoylphorbol-13-acetate to induce macrophage differentiation in acute promyelocytic leukemia NB4 cells. Leukemia 8(10):1744–1751

    PubMed  CAS  Google Scholar 

  61. Collins SJ, Russeti FW, Gallander RE, Gallo RC (1978) Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide (DMSO) and other polar solvents. Proc Natl Acad Sci USA 75:2458–2462

    Article  PubMed  CAS  Google Scholar 

  62. Ahmed N, Williams JF, Weidemann MJ (1991) The human promyelocytic HL60 cell line: a model of myeloid differentiation using dimethylsulphoxide, phorbol ester and butyrate. Biochem Int 23:591–602

    PubMed  CAS  Google Scholar 

  63. Khanna-Gupta A, Kolibaba K, Zibello TA, Berliner N (1994) NB4 cells show bilineage potential and an aberrant pattern of neutrophil secondary granule protein gene expression. Blood 84(1):294–302

    PubMed  CAS  Google Scholar 

  64. Drach J, Lopez-Berestein G, McQueen T, Andreeff M, Mehta K (1993) Induction of differentiation in myeloid leukemia cell lines and acute promyelocytic leukemia cells by liposomal all-trans-retinoic acid. Cancer Res (9):2100–2104

  65. Mehta K, Lopez-Berestein G (1986) Expression of tissue transglutaminase in cultured monocytic leukemia (THP-1) cells during differentiation. Cancer Res 46(3):1388–1394

    PubMed  CAS  Google Scholar 

  66. Ruggero D, Soneneberg N (2005) Akt and translational control 24(50):7426–7434

    Google Scholar 

  67. Ozpolat B, Lopez-Berestein G, Mehta K (2001) ATRA(ouble) in the treatment of acute promyelocytic leukemia. J Biol Reg Homeostat Agents 15:107–122

    CAS  Google Scholar 

  68. Topisirovic I, Guzman ML, McConnell MJ, Licht JD, Culjkovic B, Neering SJ et al (2003) Aberrant eIF4E dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol 24:8992–9002

    Article  CAS  Google Scholar 

  69. Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S, Lockett SJ, Sonenberg N, Colburn NC (2003) The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4a binding protein that inhibits translation. Mol Cel Biol 23(1):26–37

    Google Scholar 

  70. Iborra J, Jackson DA, Cook PR (2001) Coupled transcription and translation within nuclei of mammalian cells. Science 293:1139–1142

    Article  PubMed  CAS  Google Scholar 

  71. Cmarik JL, Min H, Hegamyer G, Zhan S, Kulesz-Martin M, Yoshinaga H et al (1999) Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA 96:14037–14042

    Article  PubMed  CAS  Google Scholar 

  72. Lai HK, Borden KL (2000) The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 19(13):1623–1634

    Article  PubMed  CAS  Google Scholar 

  73. Zhong S, Salomoni P, Pandolfi PP (2000) The transcriptional role of PML and the nuclear body. Nat Cell Biol 2(5):E85–E90

    Google Scholar 

  74. Meric F, Hunt KK (2002) Translation initiation in cancer: a novel target for therapy. Mol Cancer Ther 1:971–979

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Karen Ramires for help in conducting our FACS analyses, Kenneth Dunner Jr. in M. D. Anderson Cancer Center’s NCI-funded High Resolution Electron Microscopy Facility for his help in performing electron microscopy, and Pierrette Lo for editing the manuscript. Supported in part by National Cancer Institute grant U54 RFA CA096300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Lopez-Berestein.

Additional information

B. Ozpolat and U. Akar contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozpolat, B., Akar, U., Zorrilla-Calancha, I. et al. Death-associated protein 5 (DAP5/p97/NAT1) contributes to retinoic acid-induced granulocytic differentiation and arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Apoptosis 13, 915–928 (2008). https://doi.org/10.1007/s10495-008-0222-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0222-9

Keywords

Navigation