Skip to main content
Log in

Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2

  • Published:
Apoptosis Aims and scope Submit manuscript

The function of the proteasome has been linked to various pathologies, including cancer and neurodegeneration. Proteasomal inhibition can lead to death in a variety of cell types, however the manner in which this occurs is unclear, and may depend on the particular cell type. In this work we have extended previous findings pertaining to the effects of pharmacological proteasomal inhibitors on PC12 cells, by examining in more detail the induced death pathway. We find that cell death is apoptotic by ultrastructural criteria. Caspase 9 and 3 are processed, cytochrome c is released from the mitochondria and a dominant negative form of caspase 9 prevents death. Furthermore, Bax undergoes a conformational change and is translocated to the mitochondria in a caspase-independent fashion. Total cell levels of Bax however do not change, whereas levels of the BH3-only protein Bim increase with proteasomal inhibition. Transient overexpression of bcl-xL or, to a lesser extent, of bcl-2, significantly decreased apoptotic death and prevented Bax conformational change. We conclude that death elicited by proteasomal inhibition of PC12 cells follows a classical “intrinsic” pathway. Significantly, antiapoptotic bcl-2 family members prevent apoptosis by inhibiting Bax conformational change. Increased levels of Bim may contribute to cell death in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciechanover A. The ubiquitin-proteasome pathway: On protein death and cell life. EMBO J 1998; 17(24): 7151–7160

    Article  PubMed  Google Scholar 

  2. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nature Rev Neurosci 2001; 2: 589–594.

    Article  Google Scholar 

  3. Lang-Rollin I, Rideout HJ, Stefanis L. Ubiquitinated inclusions and neuronal cell death. Histol Histopathol 2003; 18(2): 509–517.

    PubMed  Google Scholar 

  4. Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25(3): 302–305.

    Article  PubMed  Google Scholar 

  5. Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998; 395(6701): 451–452.

    Article  PubMed  Google Scholar 

  6. Tanaka Y, Engelender S, Igarashi S, et al. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 2001; 10(9): 919–926.

    Article  PubMed  Google Scholar 

  7. Stefanis L, Larsen KL, Rideout HJ, Sulzer DS, Greene LA. Expression of A53T mutant, but not wild type, α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 2001; 21: 9549–9560.

    PubMed  Google Scholar 

  8. Petrucelli L, O’Farrell C, Lockhart PJ, et al. Parkin protects against the toxicity associated with mutant alpha-synuclein: Proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 2002; 36(6): 1007–1019.

    Article  PubMed  Google Scholar 

  9. Rideout HJ, Larsen KL, Sulzer D, Stefanis L. Proteasomal inhibition leads to formation of ubiquitin/α-Synuclein-immunoreactive inclusions in PC12 Cells. J Neurochem 2001; 78(4): 899–908.

    Article  PubMed  Google Scholar 

  10. Rideout HJ, Stefanis L. Proteasomal inhibition-induced inclusion formation and death in cortical neurons require transcription and ubiquitination. Mol Cell Neurosci 2002; 21(2): 223–238.

    Article  PubMed  Google Scholar 

  11. Rideout HJ, Wang Q, Park DS, Stefanis L. Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci 2003; 23(4): 1237–1245.

    PubMed  Google Scholar 

  12. Dietrich P, Rideout HJ, Wang Q, Stefanis L. Lack of p53 delays apoptosis, but increases ubiquitinated inclusions, in proteasomal inhibitor-treated cultured cortical neurons. Mol Cell Neurosci 2003; 24(2): 430–441.

    Article  PubMed  Google Scholar 

  13. Troy CM, Stefanis L, Prochiantz A, Greene LA, Shelanski ML. The contrasting roles of ICE family proteases and interleukin-1beta in apoptosis induced by trophic factor withdrawal and by copper/zinc superoxide dismutase down-regulation. Proc Natl Acad Sci USA 1996; 93(11): 5635–5640.

    Article  PubMed  Google Scholar 

  14. Troy CM, Stefanis L, Greene LA, Shelanski ML. Nedd2 is required for apoptosis after trophic factor withdrawal, but not superoxide dismutase (SOD1) downregulation, in sympathetic neurons and PC12 cells. J Neurosci 1997; 17(6): 1911–1918.

    PubMed  Google Scholar 

  15. Fenteany G, Schreiber SL. Lactacystin, proteasome function, and cell fate. J Biol Chem 1998; 273(15): 8545–8548.

    Article  PubMed  Google Scholar 

  16. Rideout HJ, Stefanis L. Caspase inhibition: A potential therapeutic strategy in neurological diseases. Histol Histopathol 2001; 16(3): 895–908.

    PubMed  Google Scholar 

  17. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002; 9(3): 459–470.

    Article  PubMed  Google Scholar 

  18. Bredesen DE. Apoptosis: Overview and signal transduction pathways. J Neurotrauma 2000; 17(10): 801–810.

    PubMed  Google Scholar 

  19. Stennicke HR, Deveraux QL, Humke EW, Reed JC, Dixit VM, Salvesen GS. Caspase-9 can be activated without proteolytic processing. J Biol Chem 1999; 274(13): 8359–8362.

    Article  PubMed  Google Scholar 

  20. Figueiredo-Pereira M, Berg K, Wilk S. A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S Proteasome) induces accumulation of ubiquitin-protein conjugates in a neuronal cell. J Neurochem 1994; 63: 1578–1581.

    PubMed  Google Scholar 

  21. Stefanis L, Park DS, Yan CY, et al. Induction of CPP32-like activity in PC12 cells by withdrawal of trophic support. Dissociation from apoptosis. J Biol Chem 1996; 271(48): 30663–30671.

    Article  PubMed  Google Scholar 

  22. Stefanis L, Troy CM, Qi H, Shelanski ML, Greene LA. Caspase-2 (Nedd-2) processing and death of trophic factor-deprived PC12 cells and sympathetic neurons occur independently of caspase-3 (CPP32)-like activity. J Neurosci 1998; 8(22): 9204–9215.

    Google Scholar 

  23. Angelastro JM, Moon NY, Liu DX, Yang AS, Greene LA, Franke TF. Characterization of a novel isoform of caspase-9 that inhibits apoptosis. J Biol Chem 2001; 276(15): 12190–12200.

    Article  PubMed  Google Scholar 

  24. Stefanis L, Park DS, Friedman WJ, Greene LA. Caspase-dependent and -independent death of camptothecin-treated embryonic cortical neurons. J Neurosci 1999; 19(15): 6235–6247.

    PubMed  Google Scholar 

  25. Neame SJ, Rubin LL, Philpott KL. Blocking cytochrome c activity within intact neurons inhibits apoptosis. J Cell Biol 1998; 142(6): 1583–1593.

    Article  PubMed  Google Scholar 

  26. Putcha GV, Deshmukh M, Johnson EM Jr. BAX translocation is a critical event in neuronal apoptosis: Regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 1999; 19(17): 7476–7485.

    PubMed  Google Scholar 

  27. Green D, Kroemer G. The central executioners of apoptosis: Caspases or mitochondria? Trends Cell Biol 1998; 8(7): 267–271.

    Article  PubMed  Google Scholar 

  28. Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2(9): 647–656.

    Article  PubMed  Google Scholar 

  29. Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 2003; 304(3): 437–444.

    Article  PubMed  Google Scholar 

  30. Hsu YT, Youle RJ. Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 1997; 272(21): 13829–13834.

    Article  PubMed  Google Scholar 

  31. Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS. Bax involvement in p53-mediated neuronal cell death. J Neurosci 2003; 18(4): 1363–1373.

    Google Scholar 

  32. Kitagawa H, Tani E, Ikemoto H, Ozaki I, Nakano A, Omura S. Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett 1999; 443(2): 181–186.

    Article  PubMed  Google Scholar 

  33. Li B, Dou QP. Bax degradation by the ubiquitin/proteasome-dependent pathway: Involvement in tumor survival and progression. Proc Natl Acad Sci USA 2000; 97(8): 3850–3855.

    Article  PubMed  Google Scholar 

  34. Dewson G, Snowden RT, Almond JB, Dyer MJ, Cohen GM. Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 2003; 22(17): 2643–2654.

    Article  PubMed  Google Scholar 

  35. Kikuchi S, Shinpo K, Tsuji S, et al. Effect of proteasome inhibitor on cultured mesencephalic dopaminergic neurons. Brain Res 2003; 964(2): 228–236.

    Article  PubMed  Google Scholar 

  36. O’Connor L, Strasser A, O’Reilly LA, et al. Bim: A novel member of the Bcl-2 family that promotes apoptosis. EMBO J 1998; 17(2): 384–395.

    Article  PubMed  Google Scholar 

  37. Akiyama T, Bouillet P, Miyazaki T, et al. Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J 2003; 22(24): 6653–6664.

    Article  PubMed  Google Scholar 

  38. Luciano F, Jacquel A, Colosetti P, et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 2003; 22(43): 6785–6793.

    Article  PubMed  Google Scholar 

  39. Monney L, Otter I, Olivier R, et al. Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2. J Biol Chem 1998; 273(11): 6121–6131.

    Article  PubMed  Google Scholar 

  40. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M. Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 2000; 75(6): 2288–2297.

    Article  PubMed  Google Scholar 

  41. An B, Goldfarb RH, Siman R, Dou QP. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 1998; 5(12): 1062–1075.

    Article  PubMed  Google Scholar 

  42. Herrmann JL, Briones F Jr, Brisbay S, Logothetis CJ, McDonnell TJ. Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene 1998; 17(22): 2889–2899.

    Article  PubMed  Google Scholar 

  43. Batistatou A, Merry DE, Korsmeyer SJ, Greene LA. Bcl-2 affects survival but not neuronal differentiation of PC12 cells. J Neurosci 1993; 13(10): 4422–4428.

    PubMed  Google Scholar 

  44. Hou Q, Cymbalyuk E, Hsu SC, Xu M, Hsu YT. Apoptosis modulatory activities of transiently expressed Bcl-2: Roles in cytochrome C release and Bax regulation. Apoptosis 2003; 8(6): 617–629.

    Article  PubMed  Google Scholar 

  45. Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 2003; 278(49): 48935–48941.

    Article  PubMed  Google Scholar 

  46. Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 2001; 29(3): 629–643.

    Article  PubMed  Google Scholar 

  47. Putcha GV, Moulder KL, Golden JP, et al. Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 2001; 29(3): 615–628.

    Article  PubMed  Google Scholar 

  48. Lang-Rollin I, Vekrellis K, Wang Q, Rideout HJ, Stefanis L. Application of proteasomal inhibitors to mouse sympathetic neurons activates the intrinsic apoptotic pathway. J Neurochem 2004; 90(6): 1511–1520.

    Article  PubMed  Google Scholar 

  49. Ganju N, Eastman A. Bcl-X(L) and calyculin A prevent translocation of Bax to mitochondria during apoptosis. Biochem Biophys Res Commun 2001; 291(5): 1258–1264.

    Article  Google Scholar 

  50. Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M. Lock RB Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ 2000; 7(1): 102–101.

    Article  PubMed  Google Scholar 

  51. Van Laethem A, Van Kelst S, Lippens S, et al. Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J 2004; 18(15): 1946–1948.

    PubMed  Google Scholar 

  52. Ishikawa Y, Kusaka E, Enokido Y, Ikeuchi T, Hatanaka H. Regulation of Bax translocation through phosphorylation at Ser-70 of Bcl-2 by MAP kinase in NO-induced neuronal apoptosis. Mol Cell Neurosci 2003; 24(2): 451–459.

    Article  PubMed  Google Scholar 

  53. Saikumar P, Dong Z, Patel Y, et al. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 1998; 17(26): 3401–3415.

    Article  PubMed  Google Scholar 

  54. Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 2001; 276(21): 18361–18374.

    Article  PubMed  Google Scholar 

  55. Rukenstein A, Rydel RE, Greene LA. Multiple agents rescue PC12 cells from serum-free cell death by translation- and transcription-independent mechanisms. J Neurosci 1991; 11(8): 2552–2563.

    PubMed  Google Scholar 

  56. Jabado O, Wang Q, Rideout HJ, et al. RAIDD aggregation facilitates apoptotic death of PC12 cells and sympathetic neurons. Cell Death Differ 2004; 11(6): 618–630.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Stefanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang-Rollin, I., Maniati, M., Jabado, O. et al. Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2. Apoptosis 10, 809–820 (2005). https://doi.org/10.1007/s10495-005-0378-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-0378-5

Keywords

Navigation