Skip to main content
Log in

Numerical Simulations of Short- and Long-Range Interaction Forces in Turbulent Particle-Laden Gas Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The main objective of this work is to study the effects of distance-dependent interactions in turbulent gas-particle flows using an Euler–Lagrange simulation approach. The turbulent gas flow is accounted for via Direct Numerical Simulation to the Kolmogorov scale using a spectral method to solve the Navier–Stokes equations in a cubic computational domain with tri-periodic boundary conditions. This flow simulation is coupled (one-way) with a Lagrangian particle phase solver that performs particle trajectory tracking. Electrostatic forces can be calculated using two different approaches. Firstly, the direct method consists of a sum of all inter-particle interactions for all the particles of the computational domain and their periodic images. However, this purely Lagrangian approach is computationally costly for a large number of particles, therefore another approximative approach is considered. According to it, one can estimate the short-range interactions via a sum of inter-particle interactions within a cut-off distance and the long-range ones via a sum of particle interactions with clusters of particles that, from a distance greater than the cut-off, are “seen” as one pseudo-particle. This method is then adjusted in order to accommodate periodic boundary conditions, which are not trivial in the case of electrostatic interactions as periodicity entails an infinite number of periodic domain images that has to be truncated to a finite number. Simulations are then performed by varying the properties of the particles in terms of diameter, density (Stokes number) and charge (electrostatic Stokes number). Finally, a statistical analysis is performed in order to investigate how the dynamics of the turbulent gas-particle flow are affected by distance-dependent particle–particle interactions, namely electrostatic forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Alipchenkov, V.M., Zaichik, L.I., Petrov, O.F.: Clustering of charged particles in isotropic turbulence. High Temp. 42(6), 919–927 (2004). https://doi.org/10.1007/s10740-005-0037-0

    Article  Google Scholar 

  • Barnes, J., Hut, P.: A hierarchical \(O( N \log N)\) force-calculation algorithm. Nature 324, 446–449 (1986). https://doi.org/10.1038/324446a0

    Article  Google Scholar 

  • Baron, T., Briens, C., Bergougnou, M., Hazlett, J.: Electrostatic effects on entrainment from a fluidized bed. Powder Technol. 53(1), 55–67 (1987). https://doi.org/10.1016/0032-5910(87)80125-0

    Article  Google Scholar 

  • Callen, J.D.: Fundamentals Of Plasma Physics. University of Wisconsin, Madison (2003)

    Google Scholar 

  • Ciborowski, J., Wlodarski, A.: On electrostatic effects in fluidized beds. Chem. Eng. Sci. 17(1), 23–32 (1962). https://doi.org/10.1016/0009-2509(62)80003-7

    Article  Google Scholar 

  • Dejoan, A., Monchaux, R.: Preferential concentration and settling of heavy particles in homogeneous turbulence. Phys. Fluids 25(1), 013301 (2013). https://doi.org/10.1063/1.4774339

    Article  Google Scholar 

  • Di Renzo, M., Urzay, J.: Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun. 9(1), 1676 (2018). https://doi.org/10.1038/s41467-018-03958-7

    Article  Google Scholar 

  • Esposito, F., Molinaro, R., Popa, C.I., Molfese, C., Cozzolino, F., Marty, L., Taj-Eddine, K., Achille, G.D., Franzese, G., Silvestro, S., Ori, G.G.: The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43(10), 5501–5508 (2016). https://doi.org/10.1002/2016GL068463

    Article  Google Scholar 

  • Eswaran, V., Pope, S.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988)

    Article  Google Scholar 

  • Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18(045103), 1–17 (2006)

    Google Scholar 

  • Fede, P., Simonin, O.: Effect of particle–particle collisions on the spatial distribution of inertial particles suspended in homogeneous isotropic turbulent flows. In: Turbulence and Interactions, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 110, pp. 119–125. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14139-3_14

  • Fede, P., Simonin, O., Villedieu, P.: Monte-Carlo simulation of colliding particles or coalescing droplets transported by a turbulent flow in the framework of a joint fluid–particle pdf approach. Int. J. Multiph. Flow 74, 165–183 (2015). https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.006

    Article  MathSciNet  Google Scholar 

  • Fessler, J., Kulick, J., Eaton, J.: Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6, 3742–3749 (1994)

    Article  Google Scholar 

  • Gatignol, R.: The Faxen formulae for a rigid particle in an unsteady non uniform Stokes flow. J. Méc. Théor. Appl. 9, 143–160 (1983)

    MATH  Google Scholar 

  • Grosshans, H., Papalexandris, M.V.: Direct numerical simulation of triboelectric charging in particle-laden turbulent channel flows. J. Fluid Mech. 818, 465–491 (2017). https://doi.org/10.1017/jfm.2017.157

    Article  MathSciNet  MATH  Google Scholar 

  • Hamamoto, N., Nakajima, Y., Sato, T.: Experimental discussion on maximum surface charge density of fine particles sustainable in normal atmosphere. J. Electrost. 28(2), 161–173 (1992)

    Article  Google Scholar 

  • Hendrickson, G.: Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chem. Eng. Sci. 61(4), 1041–1064 (2006). https://doi.org/10.1016/j.ces.2005.07.029

    Article  Google Scholar 

  • Hinze, J.: Turbulent fluid and particle interaction. Prog. Heat Mass Transf. 6, 433–452 (1972)

    Google Scholar 

  • Joseph, S., Klinzing, G.: Vertical gas–solid transition flow with electrostatics. Powder Technol. 36(1), 79–87 (1983). https://doi.org/10.1016/0032-5910(83)80011-4

    Article  Google Scholar 

  • Karnik, A.U., Shrimpton, J.S.: Mitigation of preferential concentration of small inertial particles in stationary isotropic turbulence using electrical and gravitational body forces. Phys. Fluids 24(7), 073301 (2012). https://doi.org/10.1063/1.4732540

    Article  Google Scholar 

  • Kolehmainen, J., Ozel, A., Boyce, C.M., Sundaresan, S.: A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AIChE J. 62(7), 2282–2295 (2016). https://doi.org/10.1002/aic.15279

    Article  Google Scholar 

  • Laviéville, J., Simonin, O., Berlemont, A., Chang, Z.: Validation of inter-particle collision models based on Large Eddy Simulation in gas–solid turbulent homogeneous shear flow. In: Proceedings of 7th International Symposium on Gas–Particle Flows ASME FEDSM97-3623 (1997)

  • Li, A., Ahmadi, G.: Aerosol particle deposition with electrostatic attraction in a turbulent channel flow. J. Colloid Interface Sci. 158(2), 476–482 (1993). https://doi.org/10.1006/jcis.1993.1281

    Article  Google Scholar 

  • Lu, J., Shaw, R.A.: Charged particle dynamics in turbulence: theory and direct numerical simulations. Phys. Fluids 27(6), 065111 (2015). https://doi.org/10.1063/1.4922645

    Article  Google Scholar 

  • Lu, J., Nordsiek, H., Saw, E.W., Shaw, R.A.: Clustering of charged inertial particles in turbulence. Phys. Rev. Lett. 104, 184505 (2010). https://doi.org/10.1103/PhysRevLett.104.184505

    Article  Google Scholar 

  • Maxey, M., Riley, J.: Equation of motion for a small rigid sphere in a non uniform flow. Phys. Fluids 26(4), 2883–2889 (1983)

    Article  Google Scholar 

  • Pekurovsky, D.: P3DFFT: a framework for parallel computations of fourier transforms in three dimensions. SIAM J. Sci. Comput. 34(4), C192–C209 (2012). https://doi.org/10.1137/11082748X

    Article  MathSciNet  MATH  Google Scholar 

  • Rambaud, P., Tanière, A., Oesterlé, B., Buchlin, J.: On the behavior of charged particles in the near wall region of a channel flow. Powder Technol. 125, 199–205 (2002)

    Article  Google Scholar 

  • Reade, W., Collins, L.: Effect of preferential concentration on turbulent collisions rates. Phys. Fluids 12, 2530–2540 (2000)

    Article  Google Scholar 

  • Rokkam, R.G., Fox, R.O., Muhle, M.E.: Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors. Powder Technol. 203(2), 109–124 (2010). https://doi.org/10.1016/j.powtec.2010.04.002

    Article  Google Scholar 

  • Sawford, B.: Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids 3(6), 1577–1586 (1991)

    Article  Google Scholar 

  • Schiller, L., Naumann, A.: A drag coefficient correlation. V.D.I. Zeitung 77, 318–320 (1935)

    Google Scholar 

  • Schmidt, D.S., Schmidt, R.A., Dent, J.D.: Electrostatic force on saltating sand. J. Geophys. Res. Atmos. 103(D8), 8997–9001 (1998). https://doi.org/10.1029/98JD00278

    Article  Google Scholar 

  • Simonin, O.: Continuum modelling of dispersed two-phase flows. In: Combustion and Turbulence in Two-Phase Flows, Lecture Series 1996-02, von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium (1996)

  • Simonin, O., Deutsch, E., Minier, J.: Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. Appl. Sci. Res. 51, 275–283 (1993)

    Article  Google Scholar 

  • Squires, K.D., Eaton, J.K.: Preferential concentration of particles by turbulence. Phys. Fluids A Fluid Dyn. 3(5), 1169–1178 (1991). https://doi.org/10.1063/1.858045

    Article  Google Scholar 

  • Sundaram, S., Collins, L.: Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid. Mech. 335, 75–109 (1997)

    Article  Google Scholar 

  • Wunsch, D., Fede, P., Simonin, O., Villedieu, P.: Numerical simulation and statistical modeling of inertial droplet coalescence in homogeneous isotropic turbulence. In: Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 110, pp. 401–407. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  • Yao, Y., Capecelatro, J.: Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid–Ewald-summation based approach. Phys. Rev. Fluids 3, 034301 (2018). https://doi.org/10.1103/PhysRevFluids.3.034301

    Article  Google Scholar 

  • Zaichik, L., Simonin, O., Alipchenkov, V.: Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence. Phys. Fluids 15, 2995–3005 (2003)

    Article  MathSciNet  Google Scholar 

  • Zheng, X.J., Huang, N., Zhou, Y.: The effect of electrostatic force on the evolution of sand saltation cloud. Eur. Phys. J. E 19(2), 129–138 (2006). https://doi.org/10.1140/epje/e2006-00020-9

    Article  Google Scholar 

Download references

Acknowledgements

The numerical simulations were performed on supercomputer Olympe (CALMIP) using time available under project P0111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Boutsikakis.

Ethics declarations

Conflict of interest

On behalf of the co-authors, I hereby testify that the contents of the manuscript are original and have never been published or submitted elsewhere. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutsikakis, A., Fede, P., Pedrono, A. et al. Numerical Simulations of Short- and Long-Range Interaction Forces in Turbulent Particle-Laden Gas Flows. Flow Turbulence Combust 105, 989–1015 (2020). https://doi.org/10.1007/s10494-020-00115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00115-3

Keywords

Navigation