Skip to main content
Log in

Large Eddy Simulations of Unconfined Non-reacting and Reacting Turbulent Low Swirl Jets

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The low swirl flow is a novel method for stabilizing lean premixed combustion to achieve low emissions of nitrogen oxides. Understanding the characteristics of low swirl flows is of both practical and fundamental interest. In this paper, in order to gain better insight into low swirl stabilized combustion, large eddy simulation and dynamically thickened flame combustion modeling are used to characterize various features of non-reacting and reacting low swirl flows including vortex breakdown, shear layers’ instability, and coherent structures. Furthermore, four test cases with different equivalence ratios are studied to evaluate the effects of equivalence ratio on the flame and flow characteristics. A finite volume scheme on a Cartesian grid with a dynamic one equation eddy viscosity subgrid model is used for large eddy simulations. The obtained results show that the combustion heat release and increase in equivalence ratio toward the stoichiometric value decrease the local swirl number of the flow field, while increasing the flow spreading at the burner outlet. Results show that the flame becomes W shaped as the equivalence ratio increases. Moreover, the combination of the swirling motion and combustion heat release temporally imposes a vortex breakdown in the post-flame region, which leads to occurrence of a transient recirculation zone. The temporal recirculation zone disappears downstream of the burner outlet due to merging of the inner shear layer from all sides at the centerline. Also, various analyses of shear layers’ wavy and vortical structures show that combustion heat release has the effect of decreasing the instability amplitude and vortex shedding frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Dunn-Rankin, D.: Lean combustion: technology and control. Academic Press, Amsterdam (2008)

    Google Scholar 

  2. Syred, N., Beer, J.M.: Combustion in swirling flows: A review. Combust. Flame 23, 143–201 (1974)

    Article  Google Scholar 

  3. Chan, R.K., Yegian, D.T., Miyasato, M.M., Samuelsen, G.S., Benson, C.E., Pellizzari, R., Loftus, P.: Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc. Combust. Inst. 28, 1305–1313 (2000)

    Article  Google Scholar 

  4. Johnson, M.R., Littlejohn, D., Nazeer, W.A., Smith, K.O., Cheng, R.K.: A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc. Combust. Inst. 30, 2867–2874 (2005)

    Article  Google Scholar 

  5. Huang, Y., Yang, V.: Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Comb. Sci. 35, 293–364 (2009)

    Article  Google Scholar 

  6. Cheng, R.K.: Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101, 1–14 (1995)

    Article  Google Scholar 

  7. Alekseenko, S.V., Dulin, V.M., Kozorezov, Y.S., Markovich, D.M., Shtork, S.I., Tokarev, M.P.: Flow structure of swirling turbulent propane flames. Flow, Turbul. Combust. 87, 569–595 (2011)

    Article  MATH  Google Scholar 

  8. Yegian, D.T., Cheng, R.K.: Development of a lean premixed low-swirl burner for low NO X practical application. Combust. Sci. Technol. 139, 207–227 (1998)

    Article  Google Scholar 

  9. BagheriSadeghi, N., Shahsavari, M., Farshchi, M.: Experimental characterization of response of lean premixed low-swirl flames to acoustic excitations. Int. J. Spray Combust. Dyn. 5, 309–328 (2013)

    Article  Google Scholar 

  10. Panda, J., McLaughlin, D.K.: Experiments on the instabilities of a swirling jet. Phys. Fluids 6, 263–276 (1994)

    Article  Google Scholar 

  11. Sarpkaya, T.: Turbulent vortex breakdown. Phys. Fluids 7, 2301–2303 (1995)

    Article  Google Scholar 

  12. Lu, X., Wang, S. h., Sung, H., Hsieh, Sh.Y., Yang, V.: Large-eddy simulations of turbulent swirling flows injected into a dump chamber. J. Fluid Mech. 527, 171–195 (2005)

    Article  MATH  Google Scholar 

  13. Wang, P., Bai, X.S., Wessman, M., Klingmann, J.: Large eddy simulation and experimental studies of a confined turbulent swirling flow. Phys. Fluids 16, 3306–3324 (2004)

    Article  MATH  Google Scholar 

  14. Froud, D., O’Doherty, T., Syred, N.: Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust. Flame 100, 407–412 (1995)

    Article  Google Scholar 

  15. Frohlich, J., Garcia-Villalba, M., Rodi, W.: Scalar mixing and large-scale coherent structures in a turbulent swirling jet. Flow, Turbul. Combust. 80, 47–59 (2008)

    Article  MATH  Google Scholar 

  16. Liang, H., Maxworthy, T.: An experimental investigation of swirling jets. J. Fluid Mech. 525, 115–159 (2005)

    Article  MATH  Google Scholar 

  17. Garcia-Villalba, M., Frohlich, J., Rodi, W.: Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation. Phys. Fluids 18, 1–17 (2006)

    Article  Google Scholar 

  18. Chanaud, R.C.: Observations of oscillatory motion in certain swirling flows. J. Fluid Mech. 21, 111–127 (1965)

    Article  Google Scholar 

  19. Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Comb. Sci. 32, 93–161 (2006)

    Article  Google Scholar 

  20. Wegner, B., Staufer, M., Sadiki, A., Janicka, J.: Study of flow and mixing in a generic GT combustor using LES. Flow, Turbul. Combust. 79, 389–403 (2007)

    Article  MATH  Google Scholar 

  21. Jones, W.P., Lyra, S., Navarro-Martines, S.: Large eddy simulation of turbulent confined highly swirling annular flows. Flow, Turbul. Combust. 89, 361–384 (2012)

    Article  Google Scholar 

  22. Ranga Dinesh, K.K.J., Kirkpatrick, M.P., Jenkins, K.W.: Investigation of the influence of swirl on a confined coannular swirl jet. Comput. Fluids 39, 756–767 (2010)

    Article  MATH  Google Scholar 

  23. Cheng, R.K., Littlejohn, D.: Effects of combustor geometry on the flowfields and flame properties of a low swirl injector. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air GT2008, pp. 393–407 (2008)

  24. Cheng, R.K., Littlejohn, D., Nazeer, W.A., Smith, K.O.: Laboratory studies of the flow field characteristics of low swirl injectors for adaptation to fuel-flexible turbines. J. Eng. Gas Turbine Power 130(021501), 1–10 (2008)

    Google Scholar 

  25. Cheng, R.K., Littlejohn, D.: Laboratory study of premixed H 2-air and H 2-N 2-air flames in a low-swirl injector for ultra-low emissions gas turbines. J. Eng. Gas Turbine Power 130(031503), 1–9 (2008)

    Google Scholar 

  26. Littlejohn, D., Cheng, R.K., Noble, D., Lieuwen, T.: Laboratory investigations of low-swirl injectors operating with syngases. J. Eng. Gas Turbine Power 132(011502), 1–8 (2010)

    Google Scholar 

  27. Nogenmyr, K.J., Petersson, P., Bai, X.S., Nauert, A., Olofsson, J., Brackman, C., Seyfried, H., Zetterberg, J., Li, Z.S., Richter, M., Dreizler, A., Linne, M., Alden, M.: Large eddy simulation and experiments of stratified lean premixed methane/air turbulent flames. Proc. Combust. Inst. 31, 1467–1475 (2007)

    Article  Google Scholar 

  28. Nogenmyr, K.J., Petersson, P., Bai, X.S., Fureby, C., Collin, R., Lantz, A., Linne, M., Alden, M.: Structure and stabilization mechanism of a stratified premixed low swirl flame. Proc. Combust. Inst. 33, 1567–1574 (2011)

    Article  Google Scholar 

  29. Nogenmyr, K.J., Fureby, C., Bai, X.S., Petersson, P., Collin, R., Linne, M.: Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame. Combust. Flame 156, 25–36 (2009)

    Article  Google Scholar 

  30. Sagaut, P.: Large eddy simulation for incompressible flows. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  31. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–165 (1963)

    Article  Google Scholar 

  32. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  33. Poinsot, T., Veynante, D.: Theoretical and numerical combustion. Edwards, Philadelphia (2005)

    Google Scholar 

  34. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  MATH  Google Scholar 

  35. Durand, L., Polifke, W.: Implementation of the thickened flame model for large eddy simulation of turbulent premixed combustion in a commercial solver. ASME Paper No. GT2007, 28188 (2007)

  36. Proch, F., Kempf, M.A.: Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161, 2627–2646 (2014)

    Article  Google Scholar 

  37. Strakey, P.A., Eggenspieler, G.: Development and validation of a thickened flame modeling approach for large eddy simulation of premixed combustion. J. Eng. Gas Turbine Power 132(071501), 1–9 (2010)

    Google Scholar 

  38. Nogenmyr, K.J., Bai, X., Fureby, C., Petersson, P., Collin, R., Linne, M., Aldn, M.: A comparative study of LES turbulent combustion models applied to a low swirl lean premixed burner, pp. 1–14. 46th AIAA Aerospace Sciences Meeting and Exhibit, Nevada, USA (513) (2008)

    Google Scholar 

  39. Petersson, P., Olofsson, J., Brackman, C., Seyfried, H., Zetterberg, J., Richter, M., Alden, M., Linne, M.A., Cheng, R.K., Nauert, A., Geyer, D., Dreizler, A.: Simultaneous PIV, OH-PLIF, Rayleigh thermometry OH-PLIF and stereo PIV measurements in a low-swirl flame. Appl. Opt. 46, 3928–3936 (2007)

    Article  Google Scholar 

  40. Bearman, P.W.: Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J. Fluid Mech. 21, 241–255 (1965)

    Article  MATH  Google Scholar 

  41. Kornev, N., Kroger, H., Turnow, J., Hassel, E.: Synthesis of an artificial turbulent fields with prescribed second-order statistics using the random-spot method. J. Appl. Math. Mech. 7, 47–48 (2007)

    Google Scholar 

  42. Galpin, J., Naudin, A., Vervisch, L., Angelberger, Ch., Colin, O., Domingo, P.: Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust. Flame 155, 247–266 (2008)

    Article  Google Scholar 

  43. Shahsavari, M., Aravind, I.B., Chakravarthy, S.R., Farshchi, M. Experimental Study of Lean Premixed Low Swirl Flame under Acoustic Excitations, International Symposium: Thermoacoustic Instabilities in Gas Turbines and Rocket Engines: Industry Meets Academia, Munich, Germany, GTRE 029 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shahsavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavari, M., Farshchi, M. & Arabnejad, M.H. Large Eddy Simulations of Unconfined Non-reacting and Reacting Turbulent Low Swirl Jets. Flow Turbulence Combust 98, 817–840 (2017). https://doi.org/10.1007/s10494-016-9790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9790-x

Keywords

Navigation