Skip to main content
Log in

Flow Structures Associated with Turbulent Mixing Noise and Screech Tones in Axisymmetric Jets

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A jet from an axisymmetric convergent nozzle is studied at ideal and underexpanded conditions using velocity and acoustic data. Two particle imaging velocimetry setups, a 10 kHz system and a multi-camera configuration, were used to capture near-field velocities while simultaneously sampled with far-field microphones. Proper orthogonal decomposition is performed on the velocity data to extract modes representative of physical processes in the flow. The decomposed velocity fields are then correlated with acoustic data to identify modes related to specific noise spectra. Specifically, four modes are associated with noise production in the sonic plume. Selective flow-field reconstruction is carried out, revealing interesting dynamics associated with loud flow states. In the supersonic case, screech-containing and turbulent mixing modes are isolated. The spatial modes of each data set are then compared for similarities in structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lighthill, M.J.: On sound generated aerodynamically. i. General theory. Proc. R. Soc. Lond. A Math. Phys. Sci. 211(1107), 564–587 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  2. Goldstein, M.E.: Aeroacoustics of turbulent shear flows. Annu. Rev. Fluid Mech. 16(1), 263–285 (1984)

    Article  MATH  Google Scholar 

  3. Making future commercial aircraft quieter: Glenn effort will reduce engine noise. NASA Glenn Research Center, Cleveland, OH (FS-1999-07-003-GRC) (1999)

  4. Fields, J.M.: Effect of personal and situational variables on noise annoyance in residential areas. J. Acoust. Soc. Am. 93, 2753 (1993)

    Article  Google Scholar 

  5. Trost, R.P., Shaw, G.B.: Statistical analysis of hearing loss among navy personnel. Mil. Med. 172(4), 426–430 (2007)

    Article  Google Scholar 

  6. Bridges, J.: Acoustic measurements of rectangular nozzles with bevel. In: 18th AIAA/CEAS Aeroacoustics Conference. AIAA-2012-2252. Colorado Springs (2012)

  7. Simmons, R.J.: Design and control of a variable geometry turbofan with an independently modulated third stream. Ph.D. thesis, Ohio State University (2009)

  8. Viswanathan, K., Pilon, A.: Year in Review 2011: Aeroacoustics. Aerospace America (2011)

  9. Ruscher, C.J., Kiel, B.V., Gogineni, S., Magstadt, A.S., Berry, M.G., Glauser, M.N.: Toward the development of a noise and performance tool for supersonic jet nozzles: Experimental and computational results. J. Acoust. Soc. Am. 136(4), 2100–2100 (2014)

    Article  Google Scholar 

  10. Lighthill, M.J.: On sound generated aerodynamically. ii. Turbulence as a source of sound. Proc. R. Soc. Lond. A Math. Phys. Sci. 222(1148), 1–32 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. A Math. Phys. Sci. 264(1151) (1969)

  12. Viswanathan, K.: Aeroacoustics of hot jets. J. Fluid Mech. 516, 39–82 (2004)

    Article  MATH  Google Scholar 

  13. Tam, C.K.W.: Dimensional analysis of jet-noise data. AIAA J. 44(3), 512–522 (2006)

    Article  Google Scholar 

  14. Karabasov, S., Afsar, M., Hynes, T., Dowling, A., McMullan, W., Pokora, C., Page, G., McGuirk, J.: Jet noise: Acoustic analogy informed by large eddy simulation. AIAA J. 48(7), 1312–1325 (2010)

    Article  Google Scholar 

  15. Ribner, H.S.: On the strength distribution of noise sources along a jet. J. Acoust. Soc. Am. 30(7), 676–676 (1958)

    Article  Google Scholar 

  16. Ribner, H.S.: Quadrupole correlations governing the pattern of jet noise. J. Fluid Mech. 38(01), 1–24 (1969)

    Article  MATH  Google Scholar 

  17. Bishop, K.A., Williams, F., Smith, W.: On the noise sources of the unsuppressed high-speed jet. J. Fluid Mech. (1971)

  18. Atvars, J., Schubert, L., Grande, E., Ribner, H.: Refraction of sound by jet flow or jet temperature. Institute for Aerospace Studies, University of Toronto (1965)

  19. Mani, R.: Further studies on moving source solutions relevant to jet noise. J. Sound Vib. 35(1), 101–117 (1974)

    Article  MATH  Google Scholar 

  20. Goldstein, M.: High frequency sound emission from moving point multipole sources embedded in arbitrary transversely sheared mean flows. J. Sound Vib. 80(4), 499–522 (1982)

    Article  MATH  Google Scholar 

  21. Fiedler, H.: Coherent structures in turbulent flows. Prog. Aerosp. Sci. 25(3) (1988)

  22. Goldstein, M.E.: Aeroacoustics, vol. 1. McGraw-Hill International Book Co (1976)

  23. Tam, C.K., Viswanathan, K., Ahuja, K., Panda, J.: The sources of jet noise: Experimental evidence. J. Fluid Mech. 615(1), 253–292 (2008)

    Article  MATH  Google Scholar 

  24. Bridges, J., Wernet, M.P.: Turbulence measurements of rectangular nozzles with bevel. In: 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-0228. AIAA, Kissimmee (2015)

  25. Potter, R.: An investigation to locate the acoustic sources in a high speed jet exhaust stream. Tech. rep (1968)

  26. Tam, C.K.: On the noise of a nearly ideally expanded supersonic jet. J. Fluid Mech. 51, 69–95 (1972)

    Article  MATH  Google Scholar 

  27. Ffowcs Williams, J., Kempton, A.: The noise from the large-scale structure of a jet. J. Fluid Mech. 84(4) (1978)

  28. Seiner, J.M.: A new rational approach to jet noise reduction. Theor. Comput. Fluid Dyn. 10(1–4), 373–383 (1998)

    Article  MATH  Google Scholar 

  29. Panda, J., Seasholtz, R.: Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. J. Fluid Mech. 450, 97–130 (2002)

    Article  MATH  Google Scholar 

  30. Dougherty, R.P., Panda, J., Lee, S.S.: Non-intrusive jet noise study combining rayleigh scattering and phased array measurement techniques. In: 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference), AIAA 2005-2843, p 2005. AIAA, Monterey (2005)

  31. Hall, J.W., Hall, A.M., Pinier, J.T., Glauser Mark, N.: Cross-spectral analysis of the pressure in a mach 0.85 turbulent jet. AIAA J. 47, 54–59 (2009)

    Article  Google Scholar 

  32. Varnier, J.: Experimental study and simulation of rocket engine freejet noise. AIAA J. 39(10), 1851–1859 (2001)

    Article  Google Scholar 

  33. Gallagher, J.A., McLaughlin, D.K.: Experiments on the Nonlinear Characteristics of Noise Propagation from Low and Moderate Reynolds Number Supersonic Jets. Master’s thesis, Oklahoma State University (1981)

  34. Gee, K.L., Shepherd, M.R., Falco, L.E., Atchley, A.A., Ukeiley, L.S., Jansen, B.J., Seiner, J.M.: Identification of nonlinear and near-field effects in jet noise using nonlinearity indicators. AIAA Paper 3653, 2007 (2007)

    Google Scholar 

  35. Fiévet, R., Tinney, C.E., Baars, W.J., Hamilton, M.F.: Coalescence in the sound field of a laboratory-scale supersonic jet. AIAA J. 54(1), 1–12 (2016). doi:10.2514/1.J054252

  36. Tam, C.K.: Supersonic jet noise. Ann. Rev Fluid Mech. 27(1), 17–43 (1995)

    Article  Google Scholar 

  37. Powell, A.: On the mechanism of choked jet noise. Proc. Phys. Soc. London, Sect. B 66(12), 1039 (1953)

    Article  Google Scholar 

  38. Raman, G.: Supersonic jet screech: Half-century from powell to the present. J. Sound Vib. 225(3), 543–571 (1999)

    Article  Google Scholar 

  39. Morris, P.J., Miller, S.A.E.: The prediction of broadband shock-associated noise using rans cfd. In: 15th AIAA/CEAS Aeroacoustic Conference. AIAA-2009-3315. Miami (2009)

  40. Tam, C.K.W.: Mach wave radiation from high-speed jets. AIAA J. 47(10), 2440–2448 (2009)

    Article  Google Scholar 

  41. Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press (1955)

  42. Crow, S.C., Champagne, F.H.: Orderly structure in jet turbulence. J. Fluid Mech. 48(03), 547–591 (1971)

    Article  Google Scholar 

  43. Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64(04), 775–816 (1974)

    Article  Google Scholar 

  44. Winant, C.D., Browand, F.K.: Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate reynolds number. J. Fluid Mech. 63, 237–255 (1974)

    Article  Google Scholar 

  45. Bonnet, J., Delville, J., Glauser, M., Antonia, R., Bisset, D., Cole, D., Fiedler, H., Garem, J., Hilberg, D., Jeong, J., et al.: Collaborative testing of eddy structure identification methods in free turbulent shear flows. Exp. Fluids 25 (3), 197–225 (1998)

    Article  Google Scholar 

  46. Michalke, A., Fuchs, H.: On turbulence and noise of an axisymmetric shear flow. J. Fluid Mech. 70(01), 179–205 (1975)

    Article  MATH  Google Scholar 

  47. Juvé, D., Sunyach, M., Comte-Bellot, G.: Intermittency of the noise emission in subsonic cold jets. J. Sound Vib. 71(3), 319–332 (1980)

    Article  Google Scholar 

  48. Bastin, F., Lafon, P., Candel, S.: Computation of jet mixing noise due to coherent structures: the plane jet case. J. Fluid Mech. 335, 261–304 (1997)

    Article  MATH  Google Scholar 

  49. Tam, C.K.: Jet noise: Since 1952. Theor. Comput. Fluid Dyn. 10(1–4), 393–405 (1998)

    Article  MATH  Google Scholar 

  50. Citriniti, J.H., George, W.K.: Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418(01), 137–166 (2000)

    Article  MATH  Google Scholar 

  51. Freund, J.B.: Noise sources in a low-reynolds-number turbulent jet at mach 0.9. J. Fluid Mech. 438, 277–305 (2001)

    Article  MATH  Google Scholar 

  52. Tinney, C.E., Glauser, M.N., Ukeiley, L.S.: Low-dimensional characteristics of a transonic jet. part 1. Proper orthogonal decomposition. J. Fluid Mech. 612, 107–141 (2008)

    Article  MATH  Google Scholar 

  53. Tinney, C.E., Ukeiley, L.S., Glauser, M.N.: Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction. J. Fluid Mech. 615, 53–92 (2008)

    Article  MATH  Google Scholar 

  54. Low, K., Berger, Z., Kostka, S., El Hadidi, B., Gogineni, S., Glauser, M.: A low-dimensional approach to closed-loop control of a mach 0.6 jet. Exp. Fluids 54(4), 1–17 (2013)

    Article  Google Scholar 

  55. Caraballo, E., Samimy, M., Scott, J.: Application of proper orthogonal decomposition to a supersonic axisymmetric jet. AIAA J. (2003)

  56. Ho, C.M., Huerre, P.: Perturbed free shear layers. Annu. Rev. Fluid Mech. 16(1), 365–422 (1984)

    Article  Google Scholar 

  57. Liu, J.: Coherent structures in transitional and turbulent free shear flows. Annu. Rev. Fluid Mech. 21(1), 285–315 (1989)

    Article  MathSciNet  Google Scholar 

  58. Berger, Z.P., Berry, M.G., Shea, P.R., Glauser, M.N., Kan, P., Lewalle, J., Ruscher, C.J., Gogineni, S.: Investigation of “loud” modes in a high-speed jet to indentify noise-producing events. In: 53rd AIAA ASM. AIAA-2015-0739. Kissimmee (2015)

  59. Ukeiley, L., Tinney, C.E., R., M., Glauser, M.: Spatial correlations in a transonic jet. AIAA J. 45(06), 1357–1369 (2007)

  60. Edgington-Mitchell, D., Oberleithner, K., Honnery, D.R., Soria, J.: Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822–847 (2014)

    Article  Google Scholar 

  61. Low, K.R.: Towards closed loop control of a high-speed jet for noise reduction. Ph.D. thesis, Syracuse University (2012)

  62. Berger, Z.P., Berry, M.G., Shea, P.R., Glauser, M.N., Jiang, N., Gogineni, S., Eurika, K., Noack, B.R., Spohn, A.: Analysis of high speed jet flow physics with time-resolved piv. In: 52nd AIAA ASM. AIAA-2014-1226. National Harbor (2014)

  63. Berger, Z., Shea, P., Berry, M., Noack, B., Gogineni, S., Glauser, M.: Active flow control for high speed jets with large window piv. J. Flow Turbulence Control 94(1), 97–123 (2015)

    Article  Google Scholar 

  64. Schlegel, M., Noack, B.R., Jordan, P., Dillmann, A., Groschel, E., Schröder, W., Wei, M., Freund, J.B., Lehmann, O., Tadmor, G.: On least-order flow representations for aerodynamics and aeroacoustics. J. Fluid Mech. 679, 367–398 (2012)

    Article  MATH  Google Scholar 

  65. Tinney, C.E., Hall, A.M., Glauser, M.N., Ukeiley, L.S., Coughlin, T.: Designing an anechoic chamber for the experimental study of high speed heated jets. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit (0010) (2004)

  66. Berger, Z.P., Low, K.R., Kostka, S., Gogineni, S., Glauser, M.N.: Investigation of an axisymmetric transonic jet with high resolution time resolved piv. In: 48 t h AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA-2012-3822. Atlanta (2012)

  67. Adrian, R.J., Westerweel, J.: Particle Image Velocimetry, vol. 30. Cambridge University Press (2011)

  68. Kähler, C., Sammler, B., Kompenhans, J.: Generation and control of tracer particles for optical flow investigations in air. Exp. Fluids 33(6), 736–742 (2002)

    Article  Google Scholar 

  69. Shea, P.R., Berger, Z.P., Berry, M.G., Glauser, M.N., Gogineni, S.: Low-dimensional modeling of a mach 0.6 axisymmetric jet. In: 52nd AIAA ASM. AIAA-2014-0245. National Harbor (2014)

  70. Bridges, J., Wernet, M.P.: The nasa subsonic jet particle image velocimetry (piv) dataset. Tech. Rep. NASA/TM-2011-216807, NASA Glenn Research Center, Cleveland, Ohio (2011)

  71. Mitchell, D., Honnery, D., Soria, J.: Particle relaxation and its influence on the particle image velocimetry cross-correlation function. Exp. Fluids 51(4), 933–947 (2011)

    Article  Google Scholar 

  72. Shea, P.: Experimental investigation of an actively controlled three-dimensional turret wake. Ph.D. dissertation, Syracuse University (2012)

  73. Raffel, M., Willert, C.E., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer (1998)

  74. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarsky, V.I. (eds.) Atm. Turb. and Radio Wave Prop., pp 166–178. Nauka, Moscow (1967)

  75. Sirovich, L.: Turbulence and the dynamics of coherent structures, part i and ii. Q. Appl. Math. 45 (1987)

  76. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1993)

  77. Adrian, R.J.: On the role of conditional averages in turbulence theory. In: Turbulence in Liquids: Proceedings of the Fourth Biennial Symposium on Turbulence in Liquids, vol. 66, pp 323–332 (1977)

  78. Bonnet, J., Cole, D., Delville, J., Glauser, M., Ukeiley, L.: Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp. Fluids 17(5), 307–314 (1994)

    Article  Google Scholar 

  79. Taylor, J., Glauser, M.: Towards practical flow sensing and control via pod and lse based low-dimensional tools. J. Fluids Eng. 126(3), 337–345 (2004)

    Article  Google Scholar 

  80. Ukeiley, L., Murray, N.: Velocity and surface pressure measurements in an open cavity. Exp. Fluids 38(5), 656–671 (2005)

    Article  Google Scholar 

  81. Tu, J.H., Griffin, J., Hart, A., Rowley, C.W., Cattafesta, L.N. III, Ukeiley, L.S.: Integration of non-time-resolved piv and time-resolved velocity point sensors for dynamic estimation of velocity fields. Exp. Fluids 54(2), 1–20 (2013)

    Article  Google Scholar 

  82. Durgesh, V., Naughton, J.: Multi-time-delay lse-pod complementary approach applied to unsteady high-reynolds-number near wake flow. Exp Fluids 49(3), 571–583 (2010)

    Article  Google Scholar 

  83. Witze, P.O.: Centerline velocity decay of compressible free jets. AIAA J. 12(4), 417–418 (1974)

    Article  Google Scholar 

  84. Kleinstein, G.: An approximate solution for the axisymmetric jet of a laminar compressible fluid. Q. Appl. Math. 20(1), 49–54 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  85. Kleinstein, G.: Mixing in turbulent axially symmetric free jets. J. Spacecr. Rocket. 1(4), 403–408 (1964)

    Article  Google Scholar 

  86. Jordan, P., Gervais, Y.: Modelling self-and shear-noise mechanisms in inhomogeneous, anisotropic turbulence. J. Sound Vib. 279(3), 529–555 (2005)

    Article  Google Scholar 

  87. Suzuki, T., Lele, S.K.: Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490, 139–167 (2003)

    Article  MATH  Google Scholar 

  88. Berland, J., Bogey, C., Bailly, C.: Numerical study of screech generation in a planar supersonic jet. Phys. Fluids (1994-present) 19(7), 075,105 (2007)

    Article  MATH  Google Scholar 

  89. Berger, Z.P.: The effects of active flow control on high-speed jet flow physics and noise. Ph.D. thesis, Syracuse University (2014)

  90. Henderson, B., Bridges, J., Wernet, M.: An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J. Fluid Mech. 542, 115–137 (2005)

    Article  MATH  Google Scholar 

  91. Mitchell, D.M., Honnery, D.R., Soria, J.: The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. J. Vis. 15(4), 333–341 (2012)

    Article  Google Scholar 

  92. Berry, M.G., Magstadt, A.S., Berger, Z.P., Shea, P.R., Glauser, M.N., Ruscher, C.J., Gogineni, S.P.: Comparison of spatial and temporal resolution on high speed axisymmetric jets. In: 53rd AIAA Aerospace Sciences Meeting (2015)

Download references

Acknowledgments

The authors would like to acknowledge a Phase II SBIR with Spectral Energies, LLC. and Air Force Research Laboratory Turbine Engine Division under the guidance of Dr. Barry V. Kiel as project monitor, for the continued support and assistance in this research. Additionally, thanks are given to Dr. Jacques Lewalle of Syracuse University for the many enlightening conversations that helped with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Magstadt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magstadt, A.S., Berry, M.G., Berger, Z.P. et al. Flow Structures Associated with Turbulent Mixing Noise and Screech Tones in Axisymmetric Jets. Flow Turbulence Combust 98, 725–750 (2017). https://doi.org/10.1007/s10494-016-9784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9784-8

Keywords

Navigation