Skip to main content
Log in

Passive Scalar Transport Modeling for Hybrid RANS/LES Simulation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A transport model for hybrid RANS/LES simulation of passive scalars is proposed. It invokes a dynamically computed subgrid Prandtl number. The method is based on computing test-filter fluxes. The formulation proves to be especially effective on coarse grids, as occur in DES. After testing it in a wall resolved LES, the present formulation is applied to the Adaptive DDES model of Yin et al. (Phys. Fluids 27, 025105 2015). It is validated by turbulent channel flow and turbulent boundary layer computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Reddy, K.R., Ryon, J.A., Durbin, P.A.: A DDES model with a smagorinsky-type eddy viscosity formulation and log-layer mismatch correction. Int. J. Heat Fluid Flow 50, 103–113 (2014)

    Article  Google Scholar 

  2. Shur, M.L., Spalart, P.R., Strelets, M.K.H., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  3. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K.H., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  4. Yin, Z., Reddy, K.R., Durbin, P.A.: On the dynamic computation of the model constant in delayed detached eddy simulation. Phys. Fluids 27, 025105 (2015)

    Article  Google Scholar 

  5. Kays, W.M.: Turbulent Prandtl number, where are we?. J. Heat Tran. 116, 284–295 (1994)

    Article  Google Scholar 

  6. Kays, W.M., Crawford, M.E., Weigand, B.: Convective heat and mass transfer. Tata McGraw-Hill Education (2012)

  7. Mason, P.J., Derbyshire, S.H.: Large-eddy simulation of the stably-stratified atmospheric boundary layer. Bound.-layer Meteorol. 53, 117–162 (1990)

    Article  Google Scholar 

  8. Moin, P., Squires, K., Cabot, W., Lee, Sangsan: A dynamic subgrid-scale model for compressible turbulence and scalar transport. P. Fluids A: Fluid Dyn. 3, 2746–2757 (1991)

    Article  MATH  Google Scholar 

  9. Porté-Agel, F.: A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer. Bound.-Layer Meteorol. 112, 81–105 (2004)

    Article  Google Scholar 

  10. Wang, B.-C., Yee, E., Bergstrom, D.J., Iida, O.: New dynamic subgrid-scale heat flux models for large-eddy simulation of thermal convection based on the general gradient diffusion hypothesis. J. Fluid Mech. 604, 125–163 (2008)

    Article  MATH  Google Scholar 

  11. Le Sommer, B.G., Xavier, J.M., Antoine, V.: A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations. Phys. Fluids 25, 075107 (2013)

    Article  Google Scholar 

  12. Taylor, G.I.: The present position in the theory of turbulent diffusion. In: Landsberg, H. E., VanMieghen, J. (eds.) Advances in Geophysics, vol. 6, pp 101–111. Academic Press (1959)

  13. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  14. Verma, A., Mahesh, K.: A Lagrangian subgrid-scale model with dynamic estimation of lagrangian time scale for large eddy simulation of complex flows. Phys Fluids 24, 085101 (2012)

    Article  Google Scholar 

  15. Stoll, R., Porté-Agel, F.: Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour. Res. 42 (2006)

  16. Kader, B.A.: Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Tran. 24, 1541–1544 (1981)

    Article  Google Scholar 

  17. Jasak, H., Jemcov, A., Tukovic, Z.: OpenFOAM: A C++ library for complex physics simulations. In: International Workshop on Coupled Methods in Numerical Dynamics, pp 1–20 (2007)

  18. Kawamura, H., Abe, H., Matsuo, Y.: DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. Int. J. Heat Fluid Flow 20, 196–207 (1999)

    Article  Google Scholar 

  19. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re = 590. Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  20. Wilcox, D.C.: Turbulence modeling for CFD, 2nd edn. DCW Industries La Canada, CA (1998)

    Google Scholar 

  21. Arolla, S.K., Durbin, P.A.: Generating inflow turbulence for eddy simulation of turbomachinery flows. In: 52nd AIAA Aerospace Sciences Meeting. National Harbor, Maryland (2014)

  22. De Graaff, D.B., Eaton, J.K.: Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mechan. 422, 319–346 (2000)

    Article  MATH  Google Scholar 

  23. Reynolds, W.C., Kays, W.M., Kline, S.J.: Heat transfer in the turbulent incompressible boundary layer. Technical Report 12-1-58W/PT1. NASAMemo (1958)

  24. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 4(1989-1993), 633–635 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the NASA grant NNX14AC72A and NASA Leading Edge Aeronautics grant NNX15AN98A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zifei Yin.

Appendix: Adaptive DDES model

Appendix: Adaptive DDES model

The adaptive-DDES formulation of Yin et al. [4] is summarized here. The shielding function for Delayed Detached Eddy Simulation [3] is adopted:

$$\begin{array}{@{}rcl@{}} f_{d} &=& 1- tanh([C_{d1}r_{d}]^{C_{d2}}) \qquad C_{d1}=8, C_{d2}=3\\ r_{d} &=& \frac{k/\omega+\nu}{\kappa^{2} {d_{w}^{2}} \sqrt{S^{2}+{\Omega}^{2}}} \end{array} $$
(A1)

where k/ω is the RANS eddy viscosity formula, ν is the molecular viscosity, κ the vonKarman constant, d w the wall distance, S and Ω rate of strain and rate of rotation, respectively.

It is incongruous to refer to the flow as, simultaneously, being Reynolds averaged and an instantaneous realization: reference to ‘RANS’ and ‘Eddy Simulation’ regions is loose terminology. Detached eddy simulation is best described as a length scale formulation, used to simulate realizations. The length scales and eddy viscosity are defined by:

$$\begin{array}{@{}rcl@{}} \left. \begin{array}{lll} \ell_{DDES} &=& \ell_{RANS} - f_{d}\max(0, \ell_{RANS}-\ell_{LES})\\ \ell_{RANS} &=& \frac{\sqrt{k}}{\omega}\\ \ell_{LES} &=& C_{DES}{\Delta}\\ {\Delta} &=& f_{d}V^{1/3} + (1-f_{d})h_{max}\\ \nu_{T} &=& \ell_{DDES}^{2}\,\omega \end{array}\right\} \end{array} $$
(A2)

This ν T defines the production term of the k equation in the kω RANS model [20], leaving all the other terms unaltered.

$$\begin{array}{@{}rcl@{}} \frac{Dk}{Dt} &=& 2\nu_{T}|S|^{2} - C_{\mu}k\omega + \nabla\cdot[(\nu + \sigma_{k}(k/\omega))\nabla{}k] \\ \frac{D\omega}{Dt} &=& 2C_{\omega1}|S|^{2} - C_{\omega2}\omega^{2} + \nabla\cdot[(\nu + \sigma_{\omega}(k/\omega))\nabla\omega] \end{array} $$
(A3)

The standard constants are invoked,

$$ C_{\mu} = 0.09, \quad \sigma_{k} = 0.5, \quad \sigma_{\omega} = 0.5, \quad C_{\omega1} = 5/9, \quad C_{\omega2} = 3/40 $$
(A4)

It was shown by [4] that an adaptive procedure can improve predictions. In their method, the dynamic procedure of LES [24] is applied to the eddy viscosity (A2) to evaluate C D E S locally within the flow. Following that method, define the test filter stresses,

$$\begin{array}{@{}rcl@{}} L_{ij} &=& \widehat{{u}_{i}{u}_{j}} -\hat{{u}}_{i}\hat{{u}}_{j} \\ M_{ij} &=& ({\Delta}^{2}\widehat{{\omega}{S}_{ij}}-\hat{\Delta}^{2}\hat{{\omega}}\hat{{S}}_{ij} ) \end{array} $$
(A5)

These are used to determine C D E S ; but, in order for the test filter to be valid, a significant portion of the inertial range needs to be resolved. The coarse meshes that sometimes are used in DES may not capture enough of the small scales. For this reason, a bound is placed on the computed value of C D E S

$$\begin{array}{@{}rcl@{}} C_{dyn}^{2} &=& \max\left( 0, 0.5\frac{L_{ij}M_{ij}}{M_{ij}M_{ij}}\right) \\ C_{DES} &=& \max(C_{lim}, C_{dyn}) \end{array} $$
(A6)

where the lower limit is determined by:

$$\begin{array}{@{}rcl@{}} C_{lim} &=& C_{DES}^{0}\left[1-\tanh\left( \alpha\exp\left( \frac{-\beta{}h_{max}}{L_{k}}\right)\right)\right]\\ C_{DES}^{0} &=& 0.12, \quad \alpha = 25,\quad \beta = 0.05, \quad L_{k} = \left( \frac{\nu^{3}}{\epsilon}\right)^{1/4} \\ \epsilon &=& 2(C_{DES}^{0}h_{max})^{2}\omega{}|S|^{2} + C_{\mu}k\omega \end{array} $$
(A7)

Equation A7 gagues the mesh resolution by comparing mesh size to the Kolmogoroff scale, L k . If the grid is coarse, C D E S reverts to a default value of 0.12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Durbin, P.A. Passive Scalar Transport Modeling for Hybrid RANS/LES Simulation. Flow Turbulence Combust 98, 177–194 (2017). https://doi.org/10.1007/s10494-016-9746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9746-1

Keywords

Navigation