Skip to main content
Log in

Multi-Scale High Intensity Turbulence Generator Applied to a High Pressure Turbulent Burner

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We report an experimental study dedicated to the investigation of the turbulent flow generated by a multi-scale grid and its interaction with a premixed flame. The multi-scale grid is made from the combination of three perforated plates shifted in space such that their mesh size and blockage ratio both increase in the direction of the mean flow. It is found that this multi-scale grid induces a nearly homogeneous and isotropic (at both large and small scales) in the potential core of an axisymmetric premixed burner. A comparison with a single-scale grid shows that the length scales characterizing the multi-scale grid generated turbulence are smaller than those measured downstream the single-scale grid, while the turbulent kinetic energy produced by the multi-scale grid is much larger. The energy distribution through scales is investigated by means of the second-order structure functions highlighting an increase of energy at each scale, which is even more pronounced at small scales. As emphasized by the third-order structure function, energy transfer through scales is significantly enhanced by the multi-scale forcing and results, in turns, to an exceptional fast decay of the turbulent kinetic energy. Our results are compatible with the self-preservation theory where the Taylor microscale is the characteristic length-scale. The potential of the multi-scale forcing is then assessed in a premixed methane-air flame. The influence of the turbulence onto the structure of the flame is evaluated via the turbulent flame speed. The results obtained for the multi-scale grid deviate from those obtained for single-scale grid suggesting that the flame structure may not undergo the influence of large scales alone, in agreement with recent observations of flame front wrinkling by [13].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor, G.K., Townsend, A.A.: Decay of isotropic turbulence in the initial period. Proc. R. Soc. Lond. A 193, 539–558 (1948)

    Article  MATH  Google Scholar 

  2. Bédat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Comb. Flame 100(3), 485–494 (1995)

    Article  Google Scholar 

  3. Borghi, R.: On the structure and morphology of turbulent premixed flames. In:Recent advances in the aerospace sciences, pp 117–138. Springer, Berlin Heidelberg New York (1985)

    Book  Google Scholar 

  4. Bray, K.N.C.: The interaction between turbulence and combustion. In:Symposium (international)on Combustion, Elsevier, vol 17, pp. 223233

  5. Buchhave, P., George, W.K., Lumley, J.L.: The measurement of turbulence with the laser-doppler anemometer. Ann. Rev. Fluid Mech 11(1), 443–503 (1979)

    Article  Google Scholar 

  6. Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84(2), 026322 (2011)

    Article  Google Scholar 

  7. Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044503 (2012)

    Article  Google Scholar 

  8. Comte-Bellot, G., Corrsin, S.: The use of a contraction to improve isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657–682 (1966)

    Article  Google Scholar 

  9. Corrsin, S.: Turbulence: experimental methods. In Handbuch der Physik, 524–589 (1963)

  10. Damköhler, G.: Influence of turbulence on the velocity flames in gas mixtures. Z. Elektrochem 46, 601–626 (1940)

    Google Scholar 

  11. Danaila, L., Antonia, R.A., Burattini, P.: Progress in studying small-scale turbulence using’exact’two-point equations. New J. Phys. 6(1), 128 (2004)

    Article  Google Scholar 

  12. Davidson, P.A.: The minimum energy decay rate in quasi-isotropic grid turbulence. Phys. Fluids 23, – (2011)

  13. Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent bunsen flames. (in press) (2014)

  14. George, W.K.: The decay of homogeneous isotropic turbulence. Phys. Fluids A 4(7), 1492–1509 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. George,W.K.,Wang, H.,Wollblad, C., Johansson, T.G.: Homogeneous turbulence and its relation to realizable flows. In: Proceedings of the 14th Australasian Fluid Mechanics Conference. Elsevier, University of Adelaide (2001)

  16. Good, G.H., Warhaft, Z.: On the probability distribution function of the velocity field and its derivative in multi-scale turbulence. Phys. Fluids 23, – (2011)

  17. Groth, J., Johansson, A.V.: Turbulence reduction by screens. J. Fluid Mech. 197, 139–155 (1988)

    Article  Google Scholar 

  18. Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31(1), 1369–1375 (2007)

    Article  Google Scholar 

  19. Halter, F., Chauveau, C., Gökalp, I.: Characterization of the effects of hydrogen addition in premixed methane/air flames. Int. J. of Hydrogen Energy 32(13), 2585–2592 (2007)

    Article  Google Scholar 

  20. Hearst, R.J., Lavoie, P.: Decay of turbulence generated by a square-fractal-element grid. J. Fluid Mech. 741, 567–584 (2014)

    Article  Google Scholar 

  21. Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19, – (2007)

  22. Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A.: Report no. sand85-8240. Sandia National Laboratories (1993)

  23. Kee, R.J., Rupley, F.M., Miller, J.A.: Report no. sand89-8009b. Sandia National Laboratories (1989)

  24. Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T.: Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 mpa. Comb. flame 108(1), 104–117 (1997)

    Article  Google Scholar 

  25. Krawczynski, J.F., Renou, B., Danaila, L.: The structure of the velocity field in a confined flow driven by an array of opposed jets. Phys. Fluids 22(4), – (2010)

  26. Krogstad, P.A., Davidson, P.A.: Is grid turbulence saffman turbulence?. J. Fluid Mech. 642, 373–394 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lachaux, T., Halter, F., Chauveau, C., Gökalp, I., Shepherd, I.G.: Flame front analysis of high-pressure turbulent lean premixed methane-air flames. Proc. Combust. Inst. 30(1), 819–826 (2005)

    Article  Google Scholar 

  28. Lavoie, P., Avallone, G., Gregorio, F., Romano, G.P., Antonia, R.A.: Spatial resolution of piv for the measurement of turbulence. Exp. Fluids 43(1), 39–51 (2007)

    Article  Google Scholar 

  29. Laws, E.M., Livesey, J.L.: Flow through screens. Ann. Rev. Fluid Mech. 10, 247–266 (1978)

    Article  Google Scholar 

  30. Liepmann, H.W., Robinson, M.S.: Counting methods and equipment for mean-value measurements in turbulence research. NACA TN, 3037 (1952)

  31. Makita, H.: Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8, 53–64 (1991)

    Article  Google Scholar 

  32. Malécot, Y., Auriault, C., Kahalerras, H., Gagne, Y., Chanal, O., Chabaud, B., Castaing, B.: A statistical estimator of turbulence intermittency in physical and numerical experiments. Eur. Phys. J. B 16(3), 549–561 (2000)

    Article  Google Scholar 

  33. Marshall, A., Venkateswaran, P., Noble, D., Seitzman, J., Lieuwen, T.: Development and characterization of a variable turbulence generation system. Exp. Fluids 51(3), 611–620 (2011)

    Article  Google Scholar 

  34. Mazellier, N., Vassilicos, J.C.: The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys. Fluids 20(1), – (2008)

  35. Mazellier, N., Vassilicos, J. C.: Turbulence without richardson-kolmogorov cascade. Phys. Fluids 22(1), – (2010)

  36. Mazellier, N., Danaila, L., Renou, B.: Multi-scale energy injection: a new tool to generate intense homogeneous and isotropic turbulence for premixed combustion. J. Turbul 11, – (2010)

  37. Mydlarski, L., Warhaft, Z.: On the onset of high-reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331–368 (1996)

    Article  Google Scholar 

  38. Pearson, B.R., Krogstad, P.-A., van de Water, W.: Measurements of the turbulent energy dissipation rate. Phys. Fluids 14(3), 1288–1290 (2002)

    Article  Google Scholar 

  39. Poinsot, T., Veynante, D., Candel, S.: Diagrams of premixed turbulent combustion based on direct simulation. In:Symposium (international) on combustion, Vol. 23. Elsevier (1991)

  40. Pope, S.B.: Turbulent flows. Cambridge University Press, New-York (2000)

    Book  MATH  Google Scholar 

  41. Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 23, – (1944)

  42. Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 24, – (1945)

  43. Shepherd, I.G., Cheng, R.K., Plessing, T., Kortschik, C., Peters, N.: Premixed flame front structure in intense turbulence. Proc. Combust. Inst. 29(2), 1833–1840 (2002)

    Article  Google Scholar 

  44. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.Z.Q. (1999). http://www.me.berkeley.edu/gri_mech/

  45. Sreenivasan, K. R.: On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27(5), 1048–1051 (1984)

    Article  MathSciNet  Google Scholar 

  46. Sreenivasan, K.R., Prabhu, A., Narasimha, R.: Zero-crossings in turbulent signals. J Fluid Mech 137, 251–272 (1983)

    Article  Google Scholar 

  47. Tennekes, H., Lumley, J.L.: A first course in turbulence. MIT press, Cambridge, MA (1972)

    Google Scholar 

  48. Valente, P.C., Vassilicos, J.C.: The decay of turbulence generated by a class of multiscale grids. J. Fluid Mech. 687, 300–340 (2011)

    Article  MATH  Google Scholar 

  49. Wyngaard, J.C.: Measurement of small-scale turbulence structure with hot wires. J. Phys. E: Scientific Instruments 1(11), 1105 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Mazellier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragner, R., Mazellier, N., Halter, F. et al. Multi-Scale High Intensity Turbulence Generator Applied to a High Pressure Turbulent Burner. Flow Turbulence Combust 94, 263–283 (2015). https://doi.org/10.1007/s10494-014-9556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9556-2

Keywords

Navigation