Skip to main content
Log in

Centralised Versus Decentralised Active Control of Boundary Layer Instabilities

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We use linear control theory to construct an output feedback controller for the attenuation of small-amplitude three-dimensional Tollmien-Schlichting (TS) wavepackets in a flat-plate boundary layer. A three-dimensional viscous, incompressible flow developing on a zero-pressure gradient boundary layer in a low Reynolds number environment is analyzed using direct numerical simulations. In this configuration, we distribute evenly in the spanwise direction up to 72 localised objects near the wall (18 disturbances sources, 18 actuators, 18 estimation sensors and 18 objective sensors). In a fully three-dimensional configuration, the interconnection between inputs and outputs becomes quickly unfeasible when the number of actuators and sensors increases in the spanwise direction. The objective of this work is to understand how an efficient controller may be designed by connecting only a subset of the actuators to sensors, thereby reducing the complexity of the controller, without comprising the efficiency. If n and m are the number of sensor-actuator pairs for the whole system and for a single control unit, respectively, then in a decentralised strategy, the number of interconnections deceases mn compared to a centralized strategy, which has n 2 interconnections. We find that using a semi-decentralized approach – where small control units consisting of 3 estimation sensors connected to 3 actuators are replicated 6 times along the spanwise direction – results only in a 11 % reduction of control performance. We explain how “wide” in the spanwise direction a control unit should be for a satisfactory control performance. Moreover, the control unit should be designed to account for the perturbations that are coming from the lateral sides (crosstalk) of the estimation sensors. We have also found that the influence of crosstalk is not as essential as the spreading effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas, A.: Aircraft drag reduction technology. Tech. rep., DTIC Document (1984)

  2. Hammond, E., Bewley, T., Moin, P.: Phys. Fluids 10 (9), 2421 (1998). (1994-present)

    Article  Google Scholar 

  3. Sturzebecher, D., Nitsche, W.: Int. J. Heat Fluid Flow 24, 572 (2003)

    Article  Google Scholar 

  4. Dadfar, R., Semeraro, O., Hanifi, A., Henningson, D.: AIAA j. 51 (9), 2192 (2013)

    Article  Google Scholar 

  5. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A., Trans, I E E E: Automat. Control 34, 831 (1989)

    Article  MATH  Google Scholar 

  6. Joshi, S., Speyer, J., Kim, J.: J. Fluid Mech. 332 (1), 157 (1997)

    MATH  Google Scholar 

  7. Cortelezzi, L., Speyer, J., Lee, K., Kim, J.: in Decision and Control, 1998. In: Proceedings of the 37th IEEE Conference on, vol. 2 (IEEE, 1998), vol. 2, pp. 1906-1911

  8. Högberg, M., Bewley, T.R., Henningson, D.S.: Phys. Fluids 15, 3572 (2003)

    Article  Google Scholar 

  9. Bagheri, S., Brandt, L., Henningson, D.S.: J. Fluid Mech. 620, 263 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, Y., Gaster, M.: J. Fluid Mech. 550, 185 (2006)

    Article  MATH  Google Scholar 

  11. Bagheri, S., Åkervik, E., Brandt, L., Henningson, D.S.: AIAA J. 47, 1057 (2009)

    Article  Google Scholar 

  12. Semeraro, O., Bagheri, S., Brandt, L., Henningson, D.S.: J. Fluid Mech. 677, 63 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Semeraro, O., Bagheri, S., Brandt, L., Henningson, D.S.: Transition delay in a boundary layer using active control. J. Fluid Mech. (2013). (In press)

  14. Bewley, T.R.: Progr. Aerospace. Sci 37, 21 (2001)

    Article  Google Scholar 

  15. Kim, J., Bewley, T.R.: Ann. Rev. Fluid Mech. 39, 383 (2007)

    Article  MathSciNet  Google Scholar 

  16. Bagheri, S., Henningson, D.: Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 369 (1940), 1365 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Glad, T., Ljung, L.: Control Theory, – Multivariable and Nonlinear Methods. Taylor and Francis, London (2001)

    Google Scholar 

  18. Lewis, F.L, Syrmos, L.V.: Optimal Control. John Wiley, New York (1995)

    Google Scholar 

  19. Nordström, J., Nordin, N., Henningson, D.: SIAM J. Sci. Comput. 20 (4), 1365 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: (2007)

  21. Semeraro, O., Bagheri, S., Brandt, L., Henningson, D.S. In: Schlatter, P., Henningson, D.S. (eds.) : in Seventh IUTAM Symposium on Laminar-Turbulent Transition, vol. 18, Vol. 18. Springer (2010)

  22. Bagheri, S., Hoepffner, J., Schmid, P.J., Henningson, D.S.: Appl. Mech. Rev. 62 (2) (2009)

  23. Barbagallo, A., Sipp, D., Schmid, P.J.: J. Fluid Mech. 641, 1 (2009)

    Article  MATH  Google Scholar 

  24. Moore, B.: Automatic Control. IEEE Trans. 26 (1), 17 (1981)

    MATH  MathSciNet  Google Scholar 

  25. Willcox, K., Peraire, J.: AIAA J. 40 (11), 2323 (2002)

    Article  Google Scholar 

  26. Rowley, C.: Int. J. Bifurcation Chaos Appl. Sci. Eng. 15 (3), 997 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey (2002)

    Google Scholar 

  28. Juang, J., Pappa, R.: J. Guid. 8 (5), 620 (1985)

    Article  MATH  Google Scholar 

  29. Ma, Z., Ahuja, S., Rowley, C.: Theor. Comput. Fluid Dyn. 25 (1), 233 (2011)

    Article  MATH  Google Scholar 

  30. Semeraro, O., Bagheri, S., Brandt, L., Henningson, D.: J. Fluid Mech. 677, 63 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadfar, R., Fabbiane, N., Bagheri, S. et al. Centralised Versus Decentralised Active Control of Boundary Layer Instabilities. Flow Turbulence Combust 93, 537–553 (2014). https://doi.org/10.1007/s10494-014-9552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9552-6

Keywords

Navigation