Skip to main content
Log in

Cardinium symbionts are pervasive in Iranian populations of the spider mite Panonychus ulmi despite inducing an infection cost and no demonstrable reproductive phenotypes when Wolbachia is a symbiotic partner

  • Research
  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Maternally transmitted symbionts such as Cardinium and Wolbachia are widespread in arthropods. Both Cardinium and Wolbachia can cause cytoplasmic incompatibility, a reproductive phenotype that interferes with the development of uninfected eggs that are fertilized by infected sperm. In haplodiploid hosts, these symbionts can also distort sex allocation to facilitate their spread through host populations. Without other fitness effects, symbionts that induce strong reproductive phenotypes tend to spread to high and stable infection frequencies, whereas variants that induce weak reproductive phenotypes are typically associated with intermediate and variable frequencies. To study the spread of Cardinium in a haplodiploid host, we sampled Iranian populations of the economically important spider mite Panonychus ulmi in apple orchards. Within several field populations, we also studied the Wolbachia infection frequencies. All P. ulmi field populations carried a Cardinium infection and exhibited high infection frequencies. In contrast, Wolbachia frequency ranged between ca. 10% and ca. 70% and was only found in co-infected mites. To test whether Cardinium induce reproductive phenotypes in P. ulmi, a Cardinium-cured derived line was generated by antibiotic treatment from a co-infected field population. Genetic crosses indicated that Cardinium do not induce demonstrable levels of cytoplasmic incompatibility and sex allocation distortion in co-infected P. ulmi. However, Cardinium infection was associated with a longer developmental time and reduced total fecundity for co-infected females. We hypothesize that Cardinium spread through P. ulmi populations via uncharacterized fitness effects and that co-infection with Wolbachia might impact these drive mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Count and read data are uploaded as Supplementary Material.

References

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NHG, NP, and JK performed the experiments. NHG, NP, and NW analyzed the data. NW wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Nafiseh Poorjavd or Nicky Wybouw.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghshenas-Gorgabi, N., Poorjavd, N., Khajehali, J. et al. Cardinium symbionts are pervasive in Iranian populations of the spider mite Panonychus ulmi despite inducing an infection cost and no demonstrable reproductive phenotypes when Wolbachia is a symbiotic partner. Exp Appl Acarol 91, 369–380 (2023). https://doi.org/10.1007/s10493-023-00840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-023-00840-0

Keywords

Navigation