Skip to main content
Log in

Transcriptomic and proteomic response of Manihot esculenta to Tetranychus urticae infestation at different densities

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Tetranychus urticae (Acari: Tetranychidae) is an extremely serious cassava (Manihot esculenta) pest. Building a genomic resource to investigate the molecular mechanisms of cassava responses to T. urticae is vital for characterizing cassava resistance to mites. Based on the tolerance of cassava varieties to mite infestation (focusing on mite development rate, fecundity and physiology), cassava variety SC8 was selected to analyze transcriptomic and proteomic changes after 5 days of T. urticae feeding. Transcriptomic analysis revealed 698 and 2140 genes with significant expression changes under low and high mite infestation, respectively. More defense-related genes were found in the enrichment pathways at high mite density than at low density. In addition, iTRAQ-labeled proteomic analysis revealed 191 proteins with significant expression changes under low mite infestation. Differentially expressed genes and proteins were mainly found in the following defense-related pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis, and glutathione metabolism under low-density mite feeding and plant hormone signal transduction and plant-pathogen interaction pathways under high-density mite feeding. The plant hormone signal transduction network, involving ethylene, jasmonic acid, and salicylic acid transduction pathways, was explored in relation to the M. esculenta response to T. urticae. Correlation analysis of the transcriptome and proteome generated a Pearson correlation coefficients of R = 0.2953 (P < 0.01), which might have been due to post-transcriptional or post-translational regulation resulting in many genes being inconsistently expressed at both the transcript and protein levels. In summary, the M. esculenta transcriptome and proteome changed in response to T. urticae, providing insight into the general activation of plant defense pathways in response to mite infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agut B, Gamir J, Jaques JA, Flors V (2015) Tetranychus urticae-triggered responses promote genotype-dependent conspecific repellence or attractiveness in citrus. N Phytol 207:790–804

    Article  CAS  Google Scholar 

  • Agut B, Gamir J, Jaques JA, Flors V (2016) Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. J Exp Bot 67:5711–5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alba JM, Schimmel BCJ, Glas JJ, Ataide LMS, Pappas ML, Villarroel CA, Schuurink RC, Sabelis MW, Kant MR (2015) Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. N Phytol 205:828–840

    Article  CAS  Google Scholar 

  • Arena GD, Ramos-Gonzalez PL, Rogerio LA, Ribeiro-Alves M, Casteel CL, Freitas-Astua J, Machado MA (2018) Making a Better Home: modulation of plant defensive response by Brevipalpus mites. Front Plant Sci 9:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2 -specified disease resistance in Arabidopsisis coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Baxter HL, Stewart JCN (2013) Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress. Biofuels 4:635–650

    Article  CAS  Google Scholar 

  • Bellotti AC (2008) Cassava Pests and their management. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, pp 764–794

    Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17:763–770

    Article  CAS  PubMed  Google Scholar 

  • Bonnet C, Lassueur S, Ponzio C, Gols R, Dicke M, Reymond P (2017) Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC Plant Biol 17:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart RS, Setter TL, Gleadow RM, Kulakow P, Ferguson ME, Rounsley S, Rokhsar DS (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34(5):562–570

    Article  CAS  PubMed  Google Scholar 

  • Buffon G, Blasi EAD, Rativa AGS, Lamb TI, Gastmann R, Adamski JM, Schwambach J, Ricachenevsky FK, Heringer AS, Silveira V, Lopes MCB, Sperotto RA (2018) Unraveling rice tolerance mechanisms against Schizotetranychus oryzaemite infestation. Front Plant Sci 9:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Bui H, Greenhalgh R, Ruckert A, Gill GS, Lee S, Ramirez RA, Clark RM (2018) Generalist and specialist mite herbivores induce similar defense responses in maize and barley but differ in susceptibility to benzoxazinoids. Front Plant Sci 9:1222

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Wu F, Zhang J (2016) Potential production of non-food biofuels in China. Renew Energy 85:939–944

    Article  CAS  Google Scholar 

  • Chico JM, Chini A, Fonseca S, Solano R (2008) JAZ repressors set the rhythm in jasmonate signaling. Curropinplant Biol 11:486–494

    CAS  Google Scholar 

  • Choi HW, Dong HL, Hwang BK (2009) The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. Mol Plant Microbe Interact 22:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Davar R, Darvishzadeh R, Majd A (2013) Changes in antioxidant systems in sunflower partial resistant andsusceptible lines as affected by Sclerotinia sclerotiorum. Biologia 68:821–829

    Article  CAS  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    Article  CAS  PubMed  Google Scholar 

  • Dixon R (2008) The phytoalexin respons: eliciting, signalling and control of host gene expression. Biol Rev 61:239–291

    Article  Google Scholar 

  • Dworak A, Nykiel M, Walczak B, Miazek A, Szworst-Lupina D, Zagdanska B, Kielkiewicz M (2016) Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. Planta 244:939–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501

    Article  CAS  PubMed  Google Scholar 

  • Errard A, Ulrichs C, Kuehne S, Mewis I, Mishig N, Maul R, Drungowski M, Parolin P, Schreiner M, Baldermann S (2016) Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnealarvae and herbivore(s)-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae. Front Plant Sci 7:1256

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted calcium wave dependent on AtRBOHD and TPC1 propagates the systemic response to salt stress in arabidopsis roots. Plant Physiol 171:1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fini A, Brunetti C, Ferdinando MD, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Verrall SR, Hancock RD (2015) Systematic analysis of phloem-feeding insect-induced transcriptional reprogramming in Arabidopsis highlights common features and reveals distinct responses to specialist and generalist insects. J Exp Bot 66:495–512

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Furstenberg-Hagg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard MDP, Glauser G, Robert CAM, Turlings TCJ (2018) Fine-tuning the ‘plant domestication-reduced defense’ hypothesis: specialist vs generalist herbivores. N Phytol 217:355–366

    Article  CAS  Google Scholar 

  • Golan K, Sempruch C, Gorska-Drabik E, Czerniewicz P, Lagowska B, Kot I, Kmiec K, Magierowicz K, Leszczynski B (2017) Accumulation of amino acids and phenolic compounds in biochemical plant responses to feeding of two different herbivorous arthropod pests. Arthropod Plant Interact 11:675–682

    Article  Google Scholar 

  • Golan K, Kot I, Gorska-Drabik E, Jurado IG, Kmiec K, Lagowska B (2019) Physiological response of basil plants to twospotted spider mite (Acari: Tetranychidae) infestation. J Econ Entomol. https://doi.org/10.1093/jee/toy399

    Article  PubMed  Google Scholar 

  • Gong YJ, Chen JC, Zhu L, Cao LJ, Jin GH, Hoffmann AA, Zhong CF, Wang P, Lin G, Wei SJ (2018) Preference and performance of the two-spotted spider mite Tetranychus urticae (Acari: tetranychidae) on strawberry cultivars. Exp Appl Acarol 76:185–196

    Article  PubMed  Google Scholar 

  • Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel G, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24:2483–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Hu MZ, Hu WB, Xia ZQ, Zhou XC, Wang WQ (2016) Validation of reference genes for relative quantitative gene expression studies in cassava (Manihot esculentaCrantz) by using quantitative real-time PCR. Front Plant Sci 7:e109825

    Google Scholar 

  • Hu Q, Min L, Yang X, Jin S, Zhang L, Li Y, Ma Y, Qi X, Li D, Liu H, Lindsey K, Zhu L, Zhang X (2018) Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acidsynthesis. Plant Physiol 176:1808–1823

    Article  CAS  PubMed  Google Scholar 

  • Ji ZJ, Zeng YX, Liang Y, Qian Q, Yang CD (2019) Proteomic dissection of the rice-Fusarium fujikuroi interaction and the correlation between the proteome and transcriptome under disease stress. BMC Genomics. https://doi.org/10.1186/s12864-019-5435-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadota Y, Shirasu K, Zipfel C (2015) Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol 56:1472

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R (2010) Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol 4:383–391

    Article  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloth KJ, Wiegers GL, Busscher-Lange J, Haarst JCV, Kruijer W, Bouwmeester HJ, Dicke M, Jongsma MA (2016) AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. J Exp Bot 67:3383–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kmiec K, Kot I, Rubinowska K, Lagowska B, Golan K, Gorska-Drabik E (2014) Physiological reaction of Phalaenopsis x hybridum ‘Innocence’ on Pseudococcus longispinus (Targoni Tozetti) feeding. Acta Sci Pol-Hortoru 13:85–95

    Google Scholar 

  • Kobayashi M, Yoshioka M, Asai S, Nomura H, Kuchimura K, Mori H, Doke N, Yoshioka H (2012) StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst. N Phytol 196:223–237

    Article  CAS  Google Scholar 

  • Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147:1358–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    Article  PubMed  Google Scholar 

  • Lal SS, Pallai KS (1980) The effect of Tetranychid spider mites infestations on tuber yield of cassava. Indian J Plant Prot 8:128–132

    Google Scholar 

  • Laluk K, Prasad KVSK, Savchenko T, Celesnik H, Dehesh K, Levy M, Mitchell-Olds T, Reddy ASN (2012) The Calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in arabidopsis. Plant Cell Physiol 53:2008–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Liang X, Chen Q, Lu H, Wu CL, Lu FP, Tang JH (2017) Increased activities of peroxidase and polyphenol oxidase enhance cassava resistance to Tetranychus urticae. Exp Appl Acarol 71:195–209

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTmethod. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu FP, Liang X, Lu H, Li Q, Chen Q, Zhang P, Li KM, Liu GH, Yan W, Song JM, Duan CF, Zhang LH (2017) Overproduction of superoxide dismutase and catalase confers cassava resistance to Tetranychus cinnabarinus. Sci Rep UK 7:40179

    Article  CAS  Google Scholar 

  • Ma G-M, Shi X-Y, Kang Z-J, Gao X-W (2018) The influence of Tetranychus cinnabarinus-induced plant defense responses on Aphis gossypii development. J Intergr Agr 17:164–172

    Article  CAS  Google Scholar 

  • Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973

    Article  CAS  PubMed  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Estrella Santamaria M, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V (2015) Tomato whole genome transcriptional response to Tetranychus urticaeidentifies divergence of spider mite-induced responses between tomato and arabidopsis. Mol Plant Microbe Interact 28:343–361

    Article  CAS  PubMed  Google Scholar 

  • Nakahara KS, Chikara M, Syouta Y, Hanako S, Yukiko K, Wada TS, Ayano M, Kazunori G, Kazuki T, Kae S (2012) Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci USA 109:10113–10118

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakata M, Ohme-Takagi M (2013) Two bHLH-type transcription factors, JA-ASSOCIATED MYC2-LIKE2 and JAM3, are transcriptional repressors and affect male fertility. Plant Signal Behav 8:e26473–e26473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Bio 52:195–204

    Article  CAS  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2 + and phosphorylation. J Biol Chem 283:8885–8892

    Article  CAS  PubMed  Google Scholar 

  • Ouyang J, Tian Y, Jiang C, Yang Q, Wang H, Li Q (2018) Laboratory assays on the effects of a novel acaricide, SYP-9625 on Tetranychus cinnabarinus (Boisduval) and its natural enemy, Neoseiulus californicus (McGregor). Plos ONE. https://doi.org/10.1371/journal.pone.0199269

    Article  PubMed  PubMed Central  Google Scholar 

  • Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18:402–411

    Article  CAS  PubMed  Google Scholar 

  • Pan ZY, Zeng YL, An JY, Ye JL, Xu Q, Deng XX (2012) An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Prot 75:2670–2684

    Article  CAS  Google Scholar 

  • Park JM, Paek KH (2007) Recognition and response in plant-pathogen interactions. J Plant Biol 50:132–138

    Article  CAS  Google Scholar 

  • Rauwane ME, Odeny DA, Millar I, Rey C, Rees J (2018) The early transcriptome response of cassava (Manihot esculenta Crantz) to mealybug (Phenacoccus manihoti) feeding. PLoS ONE 13:e0202541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria ME, Arnaiz A, Velasco-Arroyo B, Grbic V, Diaz I, Martinez M (2018) Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Sci Rep UK 8:9432

    Article  CAS  Google Scholar 

  • Santamaria ME, Martinez M, Arnaiz A, Rioja C, Burow M, Grbic V, Diaz I (2019) An Arabidopsis TIR-lectin two-domain protein confers defence properties against Tetranychus urticae. Plant Physiol. https://doi.org/10.1104/pp.18.00951

    Article  PubMed  PubMed Central  Google Scholar 

  • Schimmel BCJ, Alba JM, Wybouw N, Glas JJ, Meijer TT, Schuurink RC, Kant MR (2018) Distinct signatures of host defense suppression by plant-feeding mites. Int J Mol Sci 19:3265

    Article  CAS  PubMed Central  Google Scholar 

  • Schweizer F, Fernandez-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25:3117–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherif S, El-Sharkawy I, Paliyath G, Jayasankar S (2013) PpERF3b, a transcriptional repressor from peach, contributes to disease susceptibility and side branching in EAR-dependent and -independent fashions. Plant Cell Rep 32:1111–1124

    Article  CAS  PubMed  Google Scholar 

  • Soria-Guerra RE, Rosales-Mendoza S, Chang S, Haudenshield JS, Padmanaban A, Rodriguez-Zas S, Hartman GL, Ghabrial SA, Korban SS (2010) Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theor Appl Genet 120:1315–1333

    Article  CAS  PubMed  Google Scholar 

  • Stahl E, Hilfiker O, Reymond P (2018) Plant-arthropod interactions: who is the winner? Plant J 93:703–728

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Vadassery J, Scholz SS, Mithofer A (2012) Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion. Plant Signal Behav 7:1277–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valtaud C, Foyer CH, Fleuratlessard P, Bourbouloux A (2009) Systemic effects on leaf glutathione metabolism and defence protein expression caused by esca infection in grapevines. Funct Plant Biol 36:260–279

    Article  CAS  PubMed  Google Scholar 

  • van den Boom CEM, van Beek TA, Posthumus MA, de Groot AE, Dicke M (2004) Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. J Chem Ecol 30:69–89

    Article  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Wang YL, Wang H, Fan R, Yang Q, Yu DY (2014) Transcriptome analysis of soybean lines reveals transcript diversity and genes involved in the response to common cutworm (Spodoptera lituraFabricius) feeding. Plant Cell Environ 37:2086–2101

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Liao Y, Cao S, Di H, Zheng Y (2015) Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved. Postharvest Biol Technol 102:51–60

    Article  CAS  Google Scholar 

  • Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X (2014) An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot 65:1651–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wybouw N, Kosterlitz O, Kurlovs AH, Bajda M (2019) Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae. Genetics. https://doi.org/10.1534/genetics.118.301803

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu JM, Dong S, Kong L, Gao G, Li CY, Wei LP (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322

    Article  CAS  Google Scholar 

  • Ximenez-Embun MG, Ortego F, Castanera P (2016) Drought-stressed tomato plants trigger bottom-up effects on the invasive Tetranychus evansi. PLoS ONE 11:e0145275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZF, Zhu WY, Liu YC, Liu X, Chen QS, Peng M, Wang XZ, Shen GM, He L (2014) Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome. PLoS ONE 9:e94779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zebelo SA, Maffei ME (2015) Role of early signalling events in plant-insect interactions. J Exp Bot 66:435–448

    Article  CAS  PubMed  Google Scholar 

  • Zeng WY, Sun ZD, Cai ZY, Chen HZ, Lai ZG, Yang SZ, Tang XM (2017) Proteomic analysis by iTRAQ-MRM of soybean resistance to lamprosema indicate. BMC Genomics 18:444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YL, Fan WH, Kinkema M, Li X, Dong XN (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Cheng Y, Qu N, Zhao Q, Bi D, Li X (2010) Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J 48:647–656

    Article  CAS  Google Scholar 

  • Zhou J, Wu BL, Qin P, Qi AG (2010) Physiological factors for tolerance of Kosteletzkya virginica (L.) Presl to one-instar bollworms of Helicoverpa armigera (Hubner). Acta Physiol Plant 32:519–529

    Article  Google Scholar 

  • Zou ZW, Xi JF, Liu G, Song SX, Xin TR, Xia B (2018) Effect of temperature on development and reproduction of the carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychiae), fed on cassava leaves. Exp Appl Acarol 74:383–394

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Guangxi Natural Science Foundation Program (2014GXNSFBA118103) and the National Natural Science Foundation of China (31760137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Hua Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, GQ., Zhou, Q. et al. Transcriptomic and proteomic response of Manihot esculenta to Tetranychus urticae infestation at different densities. Exp Appl Acarol 78, 273–293 (2019). https://doi.org/10.1007/s10493-019-00387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00387-z

Keywords

Navigation