Skip to main content
Log in

Nanostructured cinnamon oil has the potential to control Rhipicephalus microplus ticks on cattle

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the capacity of pure and nanostructured cinnamon oil to control the infestation and reproductive efficiency of Rhipicephalus microplus on dairy cows. In vitro (stage I)—engorged female ticks were immersed in concentrations of 1.0, 5.0 and 10% of cinnamon oil on its pure form, and 0.5, 1.0, and 5.0% of the nanostructured form. 10% cinnamon oil (pure form) showed 100% efficacy, whereas concentrations of 1 and 5% were 62 and 97% efficacious, respectively. Nanocapsules and nanoemulsions containing cinnamon oil at 5% showed 95 and 97% efficacy, respectively. In vivo (stage II)—16 naturally tick—infested cows were divided into four groups of four animals each: Group A was composed of dairy cows sprayed with Triton (control); Group B was composed of dairy cows sprayed with cinnamon oil in its pure form (5%), whereas groups C and D were composed of dairy cows sprayed with nanocapsules and nanoemulsions, respectively, containing cinnamon oil at 0.5%. The ticks on each animal were counted on days 0, 1, 4 and 20 after spraying. Animals sprayed with pure and nanoencapsulated cinnamon oil carried significantly fewer ticks on days 1 and 4 post-treatment and were free of ticks on day 20 post-treatment. Ticks collected from these dairy cows (24 h after application) had impaired oviposition and larval inhibition, resulting in 90.5 and 100% efficacy when using pure and nanocapsules, respectively. In conclusion, the pure and nanostructured forms of cinnamon oil interfered with tick reproduction, whereas a significant acaricidal effect was found when applied onto cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectroscopy, vol 4. Allured Publishing Corporation. Illinois USA, Carol Stream, p 456

    Google Scholar 

  • Anthony JP, Fyfe L, Smith H (2005) Plant active components- a resource for antiparasitic agents. Trends Parasitol 21:462–468. doi:10.1016/j.pt.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  • Antunes MDC, Cavacob A (2010) The use of essential oils for postharvest decay control. A review. Flavour Fragr J 25:351–366. doi:10.1002/ffj.1986

    Article  CAS  Google Scholar 

  • Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006. doi:10.3390/molecules17043989

    Article  PubMed  Google Scholar 

  • Boito JP, Santos RC, Vaucher RA, Raffin R, Machado G, Tonin AA, Da Silva AS (2016) Evaluation of tea tree oil for controlling Rhipicephalus microplus in dairy cows. Vet Parasitol 225:70–72. doi:10.1016/j.vetpar.2016.05.031

    Article  Google Scholar 

  • Boligon AA, Feltrin AC, Athayde ML (2013) Essential oil composition, antioxidant and antimicrobial activities of Guazuma ulmifolia from Brazil. Med Aromat Plants 2:126. doi:10.4172/2167-0412.1000126

    Google Scholar 

  • Borges LMF, Sousa LADD, Barbosa CDS (2011) Perspectives for the use of plant extracts to control the cattle tick Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet 20:89–96. doi:10.1590/S1984-29612011000200001

    Article  PubMed  Google Scholar 

  • Chagas ACS, Leite RC, Furlong J, Prates HT, Passos WM (2003) Sensibilidade do carrapato Boophilus microplus a solventes. Ciênc Rural 33:109–114. doi:10.1590/S0103-84782003000100017

    Article  Google Scholar 

  • Cheng SS, Liu JY, Hsui YR, Chang ST (2006) Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresour Technol 97:306–312. doi:10.1016/j.biortech.2005.02.030

    Article  PubMed  Google Scholar 

  • Drummond RO, Ernst SE, Trevino JL, Gladneyw J, Graham OH (1973) Boophilus annulatus and Boophilus microplus: Laboratory tests of insecticides. J Econ Entomol 66:130–133

    Article  CAS  PubMed  Google Scholar 

  • Ducornez S, Barré N, Miller RJ, Garine-Wichatitsky Md (2005) Diagnosis of amitraz resistance in Boophilus microplus in New Caledonia with modified Larval Packet Test. Vet Parasitol 130:285–292. doi:10.1016/j.vetpar.2005.04.018

    Article  CAS  PubMed  Google Scholar 

  • Furlong J (2004) Controle estratégico do carrapato dos bovinos. Hora Vet 23:53–56

    Google Scholar 

  • Gonzales JC (2003) O controle do carrapato do boi, 2nd edn. Ética, Porto Alegre, p 80

    Google Scholar 

  • Hüe T, Cauquil L, Fokou JB, Dongmo PM, Bakarnga-Via I, Menut C (2015) Acaricidal activity of five essential oils of Ocimum species on Rhipicephalus (Boophilus) microplus larvae. Parasitol Res 114:91–99. doi:10.1007/s00436-014-4164-6

    Article  PubMed  Google Scholar 

  • Lee EJ, Kim JR, Choi DR, Ahn YJ (2008) Toxicity of cassia e cinnamon oil compounds and cinnamaldehyde-related compounds to Sitophilus oryzae (Coleoptera: Curculionidae). J Econ Entomol 101:1960–1966. doi:10.1603/0022-0493-101.6.1960

    Article  CAS  PubMed  Google Scholar 

  • Lirussi D, Li J, Prieto JM, Gennari M, Buschiazzo H, Rios JL, Zaidenberg A (2004) Inhibition of Trypanosoma cruzi by plant extracts used in Chinese medicine. Fitoterapia 75:718–723. doi:10.1016/j.fitote.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  • Martinez VM, Castillo HG, Rosario CR, Flores FJ, Lopez RJ, Hernandez GR, Lugo CEC (2011) Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari ixodidae). Parasitol Res 108:481–487. doi:10.1007/s00436-010-2069-6

    Article  Google Scholar 

  • Martins RM (2006) Estudo in vitro da ação acaricida do óleo essencial da gramínea Citronela de Java (Cymbopogon winterianus Jowitt) no carrapato Boophilus microplus. Rev Bras Pl Med 8:71–78

    CAS  Google Scholar 

  • Monteiro IN (2013) Composição química e avaliação da atividade carrapaticida do óleo essencial de Cinnamomun zeylanicum no controle de Rhipicephalus microplus. Programa de pós-graduação em Química da Universidade Federal do Maranhão, São Luís Maranhão, p 63

    Google Scholar 

  • Olivo CJ, Carvalho NM, Silva JHS, Viau LV (2008) Citronella oil on the control of catlle ticks. Ciência Rural 38:406–410. doi:10.1590/S0103-84782008000200018

    Article  CAS  Google Scholar 

  • Pazinato R, Klauck V, Volpato A, Tonin AA, Santos RC, de Souza ME, Vaucher RA, Raffin R, Gomes P, Felippi CC, Stefani LM, Da Silva AS (2014) Influence of tea tree oil (Melaleuca alternifolia) on the cattle tick Rhipicephalus microplus. Exp Appl Acarol 63:77–83. doi:10.1007/s10493-013-9765-8

    Article  CAS  PubMed  Google Scholar 

  • Regnault-Roger C, Philogène BJ (2008) Past and current prospects for the use of botanicals and plant allele chemicals in integrated pest management. Pharm Biol 46:41–52. doi:10.1080/13880200701729794

    Article  CAS  Google Scholar 

  • Roel AR (2001) Utilização de plantas com propriedades inseticidas: uma contribuição para o desenvolvimento rural sustentável. Revista Internacional de Desenvolvimento Local 1:43–50

    Google Scholar 

  • Sabatini GA, Kemp DH, Hughes S, Nari A, Hansen J (2001) Tests to determine LC50 and discriminating doses for macrocyclic lactones against the cattle tick, Boophilus microplus. Vet Parasitol 95:53–62. doi:10.1016/S0304-4017(00)00406-4

    Article  CAS  PubMed  Google Scholar 

  • Santos TRB, Farias NAR, Cunha Filho NA, Pappen FG, Vaz Junior IS (2009) Abordagem sobre o controle do carrapato R. (B.) microplus no sul do Rio Grande do Sul. Pesq Vet Bras 29:65–70

    Article  Google Scholar 

  • Senra TOS, Zeringóta V, Oliveira MCM, Calmon F, Maturano R, Gomes GA, Faza A, Carvalho MG, Daemon E (2013) Assessment of the acaricidal activity of carvacrol, (E)-cinnamaldehyde, trans-anethole, and linalool on larvae of Rhipicephalus microplus and Dermacentor nitens (Acari: Ixodidae). Parasitol Res 112:1461–1466. doi:10.1007/s00436-013-3289-3

    Article  Google Scholar 

  • Shen F, Xing M, Liu L, Tang X, Wang W, Wu X, Wang G, Zhang J (2012) Efficacy of trans-cinnamaldehyde againts Psoroptes cuniculi in vitro. Parasitol Res 110:1321–1326. doi:10.1007/s00436-012-2816-y

    Article  PubMed  Google Scholar 

  • Singh G, Maurya S, Lampasona MP, Catalan CAN (2007) A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 45:1650–1661. doi:10.1016/j.fct.2007.02.031

    Article  CAS  PubMed  Google Scholar 

  • Volpato A, Baretta D, Zortéa T, Campigotto G, Galli GM, Glombowsky P, Santos RCV, Quatrin PM, Ourique AF, Baldissera MD, Stefani LM, Da Silva AS (2016) Larvicidal and insecticidal effect of Cinnamomum zeylanicum oil (pure and nanostructured) against mealworm (Alphitobius diaperinus) and its possible environmental effects. J Asia Pac Entomol 19:1159–1165. doi:10.1016/j.aspen.2016.10.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandro S. Da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, D.S., Boito, J.P., Santos, R.C.V. et al. Nanostructured cinnamon oil has the potential to control Rhipicephalus microplus ticks on cattle. Exp Appl Acarol 73, 129–138 (2017). https://doi.org/10.1007/s10493-017-0171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-017-0171-5

Keywords

Navigation