Skip to main content
Log in

Modeling the role of constant and time varying recycling delay on an ecological food chain

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the daily variation in nutrient recycling and deduce the stability criteria of the variable delay model. A comparison of the variable delay model with the constant delay one is performed to unearth the biological relevance of oscillating delay in some real world ecological situations. Numerical simulations are done in support of analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bandyopadhyay, R. Bhattacharyya, B. Mukhopadhyay: Dynamics of an autotrophherbivore ecosystem with nutrient recycling. Ecol. Model. 176 (2004), 201–209.

    Article  Google Scholar 

  2. E. Beltrami, T.O. Carroll: Modeling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32 (1994), 857–863.

    Article  MATH  Google Scholar 

  3. D. L. Benson, J.A. Sherratt, P.K. Maini: Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55 (1993), 365–384.

    MATH  Google Scholar 

  4. D. L. Benson, P.K. Maini, J.A. Sherratt: Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. Math. Comp. Model. 17 (1993), 29–34.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Beretta, G. I. Bischi, F. Solimano: Stability in chemostat equations with delayed recycling. J. Math. Biol. 28 (1990), 99–111.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Bhattacharyya, B. Mukhopadhyay: Oscillation and persistence in a mangrove ecosystem in presence of delays. J. Biol. Syst. 11 (2003), 351–364.

    Article  MATH  Google Scholar 

  7. G. I. Bischi: Effects of time lags on transient characteristics of a nutrient recycling model. Math. Biosci. 109 (1992), 151–175.

    Article  MATH  Google Scholar 

  8. P. Colinvaux: Ecology II. John Wiley & Sons, Chichester, 1993.

    Google Scholar 

  9. M. J. Crawley: Herbivory. The dynamics of animal plant interaction. Studies in Ecology Vol. 10. University of California Press, Berkley, 1983.

    Google Scholar 

  10. D. I. De Angelis, S.M. Bartell, A. L. Brenkert: Effect of nutrient recycling and food chain length on the resilience. Amer. Naturalist 134 (1989), 778–805.

    Article  Google Scholar 

  11. D. L. De Angelis: Dynamics of Nutrient Recycling and Food Webs. Chapman & Hall, London, 1992.

    Google Scholar 

  12. M. Farkas, H. I. Freedman: The stable coexistence of competing species on a renewable resource. J. Math. Anal. Appl. 138 (1989), 461–472.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Ghosh, A.K. Sarkar: Oscillatory behaviour of an autotroph-herbivore system with a type-III uptake function. Int. J. Syst. Sci. 28 (1997), 259–264.

    Article  MATH  Google Scholar 

  14. D. Ghosh, A.K. Sarkar: Stability and oscillations in a resource-based model of two interacting species with nutrient cycling. Ecol. Model. 107 (1998), 25–33.

    Article  Google Scholar 

  15. D. Ghosh, A.K. Sarkar: Qualitative analysis of autotroph-herbivore system with nutrient diffusion. Korean J. Comput. Appl. Math. 6 (1999), 589–599.

    MATH  MathSciNet  Google Scholar 

  16. T.G. Hallam: Structural sensitivity of grazing formulations in nutrient controlled plankton models. J. Math. Biol. 5 (1978), 261–280.

    MathSciNet  Google Scholar 

  17. B.D. Hassard, N.D. Kazarinoff, Y.-H. Wan: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge, 1981.

    MATH  Google Scholar 

  18. C. S. Holling: The functional response population regulation. Mem. Entomol. Soc. Can. 45 (1965), 1–60.

    Google Scholar 

  19. S.R.-J. Jang: Dynamics of variable-yield nutrient-phytoplankton-zooplankton models with nutrient recycling and self-shading. J. Math. Biol. 40 (2000), 229–250.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Kreysig: Introductory Functional Analysis with Applications. John Wiley & Sons, New York, 1978.

    Google Scholar 

  21. D. Ludwig, D.D. Jones, C. S. Holling: Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Econ. 47 (1978), 315–332.

    Article  Google Scholar 

  22. P.K. Maini, D. L. Benson, J.A. Sherratt: Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. Biol. 9 (1992), 197–213.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Mukherjee, S. Ray, D.K. Sinha: Bifurcation analysis of a detritus-based ecosystem with time delay. J. Biol. Syst. 8 (2000), 255–261.

    MATH  Google Scholar 

  24. B. Mukopadhyay, R. Bhattacharyya: A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms. J. Biol. Phys. 31 (2005), 3–22.

    Article  Google Scholar 

  25. B. Mukopadhyay, R. Bhattacharyya: Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity. Ecol. Model. 198 (2006), 163–173.

    Article  Google Scholar 

  26. B. Mukhopadhyay, R. Bhattacharyya: Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system. Bull. Math. Biol. 68 (2006), 293–313.

    Article  MathSciNet  Google Scholar 

  27. S. Muratori, S. Rinaldi: Low- and high-frequency oscillations in three-dimensional food chain systems. SIAM J. Appl. Math. 52 (1992), 1688–1706.

    Article  MATH  MathSciNet  Google Scholar 

  28. R.M. Nisbet, J. Mckinstry, W. S.C. Gurney: A “strategic” model of material cycling in a closed ecosystem. Math. Biosci. 64 (1983), 99–113.

    Article  MATH  Google Scholar 

  29. O. Pardo: Global stability for a phytoplankton-nutrient system. J. Biol. Syst. 8 (2000), 195–209.

    Google Scholar 

  30. T. Powell, P. J. Richardson: Temporal variation, spatial heterogeneity and competition for resources in plankton systems: theoretical models. Am. Nat. 125 (1985), 431–463.

    Article  Google Scholar 

  31. S. Ruan: Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31 (1993), 633–654.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Ruan: The effect of delays on stability and persistence in plankton models. Nonlinear Anal., Theory Methods Appl. 24 (1995), 575–585.

    Article  MATH  Google Scholar 

  33. S. Ruan: Oscillations in plankton models with nutrient recycling. J. Theor. Biol. 208 (2001), 15–26.

    Article  Google Scholar 

  34. S. Ruan, G. Wolkowicz: Uniform persistence in plankton models with delayed nutrient recycling. Can. Appl. Math. Q. 3 (1995), 219–235.

    MATH  MathSciNet  Google Scholar 

  35. A.K. Sarkar, D. Mitra, S. Roy, A.B. Roy: Permanence and oscillatory co-existence of a detritus-based prey-predator model. Ecol. Model. 53 (1991), 147–156.

    Article  Google Scholar 

  36. A.K. Sarkar, A.B. Roy: Oscillatory behavior in a resource-based plant-herbivore model with random herbivore attack. Ecol. Model. 68 (1993), 213–226.

    Article  Google Scholar 

  37. A. Sikder, A.B. Roy: Limit cycles in a prey-predator systems. Appl. Math. Lett. 6 (1993), 91–95.

    Article  MATH  MathSciNet  Google Scholar 

  38. D. Schley, S.A. Gourley: Linear stability criteria for population models with periodically perturbed delays. J. Math. Biol. 40 (2000), 500–524.

    Article  MATH  MathSciNet  Google Scholar 

  39. J.A. Sherratt: Turing bifurcations with a temporally varying diffusion coefficient. J. Math. Biol. 33 (1995), 295–308.

    Article  MATH  MathSciNet  Google Scholar 

  40. J.A. Sherratt: Diffusion-driven instability in oscillating environments. Eur. J. Appl. Math. 6 (1995), 355–372.

    Article  MATH  MathSciNet  Google Scholar 

  41. O. L. Smith: Food Webs. Chapman & Hall, London, 1982.

    Google Scholar 

  42. Y.M. Svirezhev, D.O. Logofet: Stability of Biological Communities. Mir, Moscow, 1983.

    Google Scholar 

  43. R.H. Whittaker: Communities and Ecosystems. Macmillan, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banibrata Mukhopadhyay.

Additional information

The present research is performed under a project supported by the Department of Science and Technology, Ministry of Human Resource Development, Govt. of India (Grant No. SR/S4/MS:296/05).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, B., Bhattacharyya, R. Modeling the role of constant and time varying recycling delay on an ecological food chain. Appl Math 55, 221–240 (2010). https://doi.org/10.1007/s10492-010-0009-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-010-0009-5

Keywords

MSC 2010

Navigation