Skip to main content

Advertisement

Log in

Interval type-2 fuzzy weighted support vector machine learning for energy efficient biped walking

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

An interval type-2 fuzzy weighted support vector machine (IT2FW-SVM) is proposed to address the problem of high energy consumption for biped walking robots. Different from the traditional machine learning method of ‘copy learning’, the proposed IT2FW-SVM obtains lower energy cost and larger zero moment point (ZMP) stability margin using a novel strategy of ‘selective learning’, which is similar to human selections based on experience. To handle the uncertainty of the experience, the learning weights in the IT2FW-SVM are deduced using an interval type-2 fuzzy logic system (IT2FLS), which is an extension of the previous weighted SVM. Simulation studies show that the existing biped walking which generates the original walking samples is improved remarkably in terms of both energy efficiency and biped dynamic balance using the proposed IT2FW-SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dariush B, Gienger M, Arumbakkam A et al (2009) Online transfer of human motion to humanoids. Int J Humanoid Robot 6(2):265–289

    Article  Google Scholar 

  2. McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82

    Article  Google Scholar 

  3. Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive dynamic walkers. Science 307(5712):1082–1085

    Article  Google Scholar 

  4. Goswami D, Vadakkepat P (2009) Planar bipedal jumping gaits with stable landing. IEEE Trans Robot 25(5):1030–1046

    Article  Google Scholar 

  5. Rajendra R, Pratihar DK (2011) Multi-objective optimization in gait planning of biped robot using genetic algorithm and particle swarm optimization tool. J Control Eng Technol 1(2):81–94

    Google Scholar 

  6. Vundavilli PR, Pratihar DK (2010) Dynamically balanced optimal gaits of a ditch-crossing biped robot. Robot Auton Syst 58(4):349–361

    Article  Google Scholar 

  7. Vundavilli PR, Pratihar DK (2011) Near-optimal gait generations of a two-legged robot on rough terrains using soft computing. Robot Comput-Integr Manuf 27(3):521–530

    Article  Google Scholar 

  8. Vahedian A, Yazdi MS, Effati S, Yazdi HS (2011) Fuzzy cost support vector regression on the fuzzy samples. Appl Intell 35(3):428–435

    Article  Google Scholar 

  9. Chatterjee S (2013) Vision-based rock-type classification of limestone using multi-class support vector machine. Appl Intell 39(1):14–27

    Article  Google Scholar 

  10. Lee LH, Wan CH, Rajkumar R, Isa D (2012) An enhanced support vector machine classification framework by using Euclidean distance function for text document categorization. Appl Intell 37(1):80–99

    Article  Google Scholar 

  11. Lee LH, Rajkumar R, Isa D (2012) Automatic folder allocation system using Bayesian-support vector machines hybrid classification approach. Appl Intell 36(2):295–307

    Article  Google Scholar 

  12. Shao YH, Wang Z, Chen WJ, Deng NY (2013) Least squares twin parametric-margin support vector machine for classification. Appl Intell. doi:10.1007/S10489-013-0423-y

    Google Scholar 

  13. Wang CW, You WH (2013) Boosting-SVM: effective learning with reduced data dimension. Appl Intell. doi:10.1007/S10489-013-0423-9

    Google Scholar 

  14. Ferreira JP, Crisostomo MM, Coimbra AP (2009) SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot. IEEE Trans Neural Netw 20(12):1885–1897

    Article  Google Scholar 

  15. Ferreira JP, Crisostomo MM, Coimbra AP (2011) Sagittal stability PD controllers for a biped robot using a neurofuzzy network and an SVR. Robotica 29(5):717–731

    Article  Google Scholar 

  16. Kim DW, Seo SJ, de Silva CW et al (2009) Use of support vector regression in stable trajectory generation for walking humanoid robots. ETRI J 31(5):565–575

    Article  Google Scholar 

  17. Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1–4):85–105

    Article  MATH  Google Scholar 

  18. Kramer KA, Hall LO, Goldgof DB, Remsen A, Luo T (2009) Fast support vector machines for continuous data. IEEE Trans Syst Man Cybern, Part B, Cybern 39(4):989–1001

    Article  Google Scholar 

  19. Guo L, Wu Y, Zhao L, Cao T, Yan W, Shen X (2011) Classification of mental task from EEG signals using immune feature weighted support vector machines. IEEE Trans Magn 47(5):866–869

    Article  Google Scholar 

  20. Tao Q, Wu GW, Wang FY, Wang J (2005) Posterior probability support vector machines for unbalanced data. IEEE Trans Neural Netw 16(6):1561–1573

    Article  Google Scholar 

  21. Elattar EE, Goulermas J, Wu QH (2010) Electric load forecasting based on locally weighted support vector regression. IEEE Trans Syst Man Cybern, Part C, Appl Rev 40(4):438–447

    Article  Google Scholar 

  22. Qi B, Zhao C, Youn E (2011) Use of weighting algorithms to improve traditional support vector machine based classifications of reflectance data. Opt Express 19(27):26816–26826

    Article  Google Scholar 

  23. Chuang CC (2007) Fuzzy weighted support vector regression with a fuzzy partition. IEEE Trans Syst Man Cybern, Part B, Cybern 37(3):630–640

    Article  Google Scholar 

  24. Emre C, Kemal P, Salih G (2007) A new medical decision making system: least square support vector machine (LSSVM) with fuzzy weighting pre-processing. Expert Syst Appl 32(2):409–414

    Article  Google Scholar 

  25. Hao PY (2008) Fuzzy one-class support vector machines. Fuzzy Sets Syst 159(18):2317–2336

    Article  MATH  Google Scholar 

  26. Zhang Y, Liu XD, Xie FD (2009) Fault classifier of rotating machinery based on weighted support vector data description. Expert Syst Appl 36(4):7928–7932

    Article  Google Scholar 

  27. Tayal DK, Saxena PC, Sharma A, Khanna G, Gupta S (2013) New method for solving reviewer assignment problem using type-2 fuzzy sets and fuzzy functions. Appl Intell. doi:10.1007/S10489-013-0445-5

    Google Scholar 

  28. Jafarzadeh S, Fadali MS, Sonbol AH (2011) Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part II. Control design. IEEE Trans Fuzzy Syst 19(6):1001–1013

    Article  Google Scholar 

  29. Khanesar MA, Kayacan E, Teshnehlab M (2011) Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function. IEEE Trans Syst Man Cybern, Part B, Cybern 41(5):1395–1406

    Article  Google Scholar 

  30. Tao CW, Taur J, Chuang CC (2011) An approximation of interval type-2 fuzzy controllers using fuzzy ratio switching type-1 fuzzy controllers. IEEE Trans Syst Man Cybern, Part B, Cybern 41(3):828–839

    Article  Google Scholar 

  31. Barkat S, Tlemcani A, Nouri H (2011) Noninteracting adaptive control of PMSM using interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 19(5):925–936

    Article  Google Scholar 

  32. Biglarbegian M, Melek WW, Mendel JM (2010) On the stability of interval type-2 TSK fuzzy logic control systems. IEEE Trans Syst Man Cybern, Part B, Cybern 40(3):798–818

    Article  Google Scholar 

  33. Zhang D (2012) A new approach and system for attentive mobile learning based on seamless migration. Appl Intell 36(1):75–89

    Article  MATH  Google Scholar 

  34. Zajaczkowski J, Verma B (2012) Selection and impact of different topologies in multi-layered hierarchical fuzzy systems. Appl Intell 36(3):564–584

    Article  Google Scholar 

  35. Xu C, Wang Y, Gu Y, Lin S, Yu G (2012) Efficient fuzzy ranking queries in uncertain databases. Appl Intell 37(1):47–59

    Article  Google Scholar 

  36. Chevallereau C, Aoustin Y (2001) Optimal reference trajectories for walking and running of a biped robot. Robotica 19:557–569

    Article  Google Scholar 

  37. Sardain P, Bessonnet G (2004) Forces acting on a biped robot. Center of pressure—zero moment point. IEEE Trans Syst Man Cybern, Part A, Syst Hum 34(5):630–637

    Article  Google Scholar 

  38. Tan KK, Wang Q-G, Hang CC (1999) Advances in PID control. Springer, London

    Google Scholar 

  39. Liu Z, Zhang Y, Wang YN (2007) A type-2 fuzzy switching control system for biped robots. IEEE Trans Syst Man Cybern, Part C, Appl Rev 37(6):1202–1213

    Article  Google Scholar 

  40. Liang QL, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  41. Juang C-F, Hsu C-H (2009) Reinforcement interval type-2 fuzzy controller design by online rule generation and q-value-aided ant colony optimization. IEEE Trans Syst Man Cybern, Part B, Cybern 39(6):1528–1542

    Article  Google Scholar 

  42. Wang L, Liu Z, Chen CLP, Zhang Y, Lee S, Chen X (2013) A UKF-based predictable SVR learning controller for biped walking. IEEE Trans Syst Man Cybern, Part A, Syst Hum. doi:10.1109/TSMC.2013.2242887

    Google Scholar 

  43. Ortiz-García EG, Salcedo-Sanz S, Pérez-Bellido ÁM, Portilla-Figueras JA (2009) Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions. Neurocomputing 72(16–18):3683–3691

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Projects 60974047 and U1134004, by the Natural Science Foundation of Guangdong Province under Grant S2012010008967, by the Science Fund for Distinguished Young Scholars (S20120011437), by the 2011 Zhujiang New Star, by the FOK Ying Tung Education Foundation of China under Grant 121061, by the Ministry of Education of New Century Excellent Talent, by the 973 Program of China under Grant 2011CB013104, and by the Doctoral Fund of Ministry of Education of China under Grant 20124420130001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Liu, Z., Chen, C.L.P. et al. Interval type-2 fuzzy weighted support vector machine learning for energy efficient biped walking. Appl Intell 40, 453–463 (2014). https://doi.org/10.1007/s10489-013-0472-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0472-2

Keywords

Navigation