Skip to main content

Advertisement

Log in

Hausdorff Coalgebras

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

As composites of constant, finite (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of \(\textsf {Set}\)-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider “powerset-like” functors based on the Hausdorff \({\mathcal {V}}\)-category structure. As a starting point, we show that for a lifting of a \(\textsf {Set}\)-functor to a topological category \(\textsf {X}\) over \(\textsf {Set}\) that commutes with the forgetful functor, the corresponding category of coalgebras over \(\textsf {X}\) is topological over the category of coalgebras over \(\textsf {Set}\) and, therefore, it is “as complete” but cannot be “more complete”. Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these “negative” results, we combine quantale-enriched categories and topology à la Nachbin. Besides studying some basic properties of these categories, we investigate “powerset-like” functors which simultaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of “Kripke polynomial” functors are (co)complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We thank Adriana Balan for calling our attention to [18].

References

  1. Abramsky, S.: A Cook’s Tour of the Finitary Non-Well-Founded Sets. In: Artemov, S., Barringer, H., Garcez, A.A. (eds.) We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 1–18. College Publications, London (2005)

    Google Scholar 

  2. Abramsky, S., Jung, A.: Domain Theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science: Semantic Structures, vol. 3, pp. 1–168. Oxford University Press, Oxford (1995)

    Google Scholar 

  3. Adámek, J.: Introduction to coalgebra. Theory Appl. Categ. 14(8), 157–199 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy of cats. Pure Applied Mathematics (New York). Wiley, New York (1990). http://tac.mta.ca/tac/reprints/articles/17/tr17abs.html. Republished in: Reprints in Theory and Applications of Categories, No. 17 (2006) pp. 1–507

  5. Akhvlediani, A., Clementino, M.M., Tholen, W.: On the categorical meaning of Hausdorff and Gromov distances, I. Topol. Appl. 157(8), 1275–1295 (2010). https://doi.org/10.1016/j.topol.2009.06.018

    Article  MathSciNet  MATH  Google Scholar 

  6. Băbuş, O., Kurz, A.: On the logic of generalised metric spaces. In: Hasuo, I. (ed.) Coalgebraic Methods in Computer Science, pp. 136–155. Springer (2016). https://doi.org/10.1007/978-3-319-40370-0_9

  7. Balan, A., Kurz, A., Velebil, J.: Extending set functors to generalised metric spaces. Log. Methods Comput. Sci. 15(1) (2019)

  8. Baldan, P., Bonchi, F., Kerstan, H., König, B.: Coalgebraic behavioral metrics. Log. Methods Comput. Sci. 14(3), 1860–5974 (2018). https://doi.org/10.23638/lmcs-14(3:20)2018

    Article  MathSciNet  MATH  Google Scholar 

  9. Barr, M.: Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 114(2), 299–315 (1993). https://doi.org/10.1016/0304-3975(93)90076-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, New York (1985). https://doi.org/10.1007/978-1-4899-0021-0. http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html. Republished in: Reprints in Theory and Applications of Categories, No. 12, 2005, pp. 1–288

  11. Birsan, T., Tiba, D.: One hundred years since the introduction of the set distance by Dimitrie Pompeiu. In: Pandolfi, F., Ceragioli, A., Dontchev, H., Furuta, K., Marti, L. (eds.) System Modeling and Optimization, IFIP Advances in Information and Communication Technology, vol. 199, pp. 35–39. Springer (2006). https://doi.org/10.1007/0-387-33006-2_4. Proceedings of the 22nd IFIP TC7 Conference, July 18–22, 2005, Turin, Italy

  12. Bonchi, F., König, B., Petrişan, D.: Up-To Techniques for Behavioural Metrics via Fibrations. In: Schewe and Zhang [51], pp. 17:1–17:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.17. http://drops.dagstuhl.de/opus/volltexte/2018/9555/. 29th International Conference on Concurrency Theory, September 4–7, 2018 - Beijing, China

  13. Bonsangue, M., Rutten, J., Silva, A.: An algebra for Kripke polynomial coalgebras. In: 24th Annual IEEE Symposium on Logic in Computer Science, 11–14 August 2009, Los Angeles, CA, USA, pp. 49–58. IEEE (2009). https://doi.org/10.1109/LICS.2009.18

  14. Bourbaki, N.: General topology, part I. Addison-Wesley, Hermann, Paris (1966). Chapters 1–4

    MATH  Google Scholar 

  15. Cantor, G.: Über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der Deutschen Mathematiker-Vereinigung 1, 75–78 (1891). http://mickindex.sakura.ne.jp/cantor/cnt_uFM_gm.html

  16. Clementino, M.M., Hofmann, D.: Triquotient maps via ultrafilter convergence. Proc. Am. Math. Soc. 130(11), 3423–3431 (2002). https://doi.org/10.1090/S0002-9939-02-06472-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Clementino, M.M., Hofmann, D., Ribeiro, W.: Cartesian closed exact completions in topology. J. Pure Appl. Algebra 224(2), 610–629 (2020). https://doi.org/10.1016/j.jpaa.2019.06.003

    Article  MathSciNet  MATH  Google Scholar 

  18. Dilworth, R.P., Gleason, A.M.: A generalized Cantor theorem. Proc. Am. Math. Soc. 13(5), 704–705 (1962). https://doi.org/10.1090/S0002-9939-1962-0144824-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Engelking, R.: General topology, Sigma Series in Pure Mathematics, vol. 6, 2nd edn. Heldermann Verlag, Berlin (1989). Translated from the Polish by the author

  20. Fawcett, B., Wood, R.J.: Constructive complete distributivity. I. Math. Proc. Camb. Philos. Soc. 107(1), 81–89 (1990). https://doi.org/10.1017/S0305004100068377

    Article  MathSciNet  MATH  Google Scholar 

  21. Flagg, R.C.: Completeness in continuity spaces. In: Seely, R.A.G. (ed.) Category Theory 1991: Proceedings of an International Summer Category Theory Meeting, held June 23–30, 1991, CMS Conference Proceedings, vol. 13. American Mathematical Society (1992)

  22. Flagg, R.C.: Quantales and continuity spaces. Algebra Universalis 37(3), 257–276 (1997). https://doi.org/10.1007/s000120050018

    Article  MathSciNet  MATH  Google Scholar 

  23. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: A compendium of continuous lattices. Springer, Berlin (1980). https://doi.org/10.1007/978-3-642-67678-9

  24. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511542725

  25. Hausdorff, F.: Grundzüge der Mengenlehre. Veit & Comp, Leipzig (1914)

    MATH  Google Scholar 

  26. Hofmann, D.: Topological theories and closed objects. Adv. Math. 215(2), 789–824 (2007). https://doi.org/10.1016/j.aim.2007.04.013

    Article  MathSciNet  MATH  Google Scholar 

  27. Hofmann, D., Neves, R., Nora, P.: Limits in categories of Vietoris coalgebras. Math. Struct. Comput. Sci. 29(4), 552–587 (2019). https://doi.org/10.1017/S0960129518000269

    Article  MathSciNet  MATH  Google Scholar 

  28. Hofmann, D., Nora, P.: Enriched stone-type dualities. Adv. Math. 330, 307–360 (2018). https://doi.org/10.1016/j.aim.2018.03.010

    Article  MathSciNet  MATH  Google Scholar 

  29. Hofmann, D., Reis, C.D.: Probabilistic metric spaces as enriched categories. Fuzzy Sets Syst. 210, 1–21 (2013). https://doi.org/10.1016/j.fss.2012.05.005

    Article  MathSciNet  MATH  Google Scholar 

  30. Hofmann, D., Reis, C.D.: Convergence and quantale-enriched categories. Categ. Gen. Algebraic Struct. Appl. 9(1), 77–138 (2018). http://cgasa.sbu.ac.ir/article_58262.html

  31. Hofmann, D., Seal, G.J., Tholen, W. (eds.): Monoidal Topology. A Categorical Approach to Order, Metric, and Topology, Encyclopedia of Mathematics and its Applications, vol. 153. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/cbo9781107517288. http://www.cambridge.org/pt/academic/subjects/mathematics/logic-categories-and-sets/monoidal-topology-categorical-approach-order-metric-and-topology. Authors: Maria Manuel Clementino, Eva Colebunders, Dirk Hofmann, Robert Lowen, Rory Lucyshyn-Wright, Gavin J. Seal and Walter Tholen

  32. Hofmann, D., Tholen, W.: Lawvere completion and separation via closure. Appl. Categ. Struct. 18(3), 259–287 (2010). https://doi.org/10.1007/s10485-008-9169-9

    Article  MathSciNet  MATH  Google Scholar 

  33. Janelidze, G., Sobral, M.: Finite preorders and topological descent. I. J. Pure Appl. Algebra 175(1–3), 187–205 (2002). https://doi.org/10.1016/S0022-4049(02)00134-2. Special volume celebrating the \(70^{\text{ th }}\) birthday of Professor Max Kelly

    Article  MathSciNet  MATH  Google Scholar 

  34. Janelidze, G., Sobral, M.: Finite preorders and topological descent. II. étale descent. J. Pure Appl. Algebra 174(3), 303–309 (2002). https://doi.org/10.1016/S0022-4049(02)00046-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Johnstone, P.T.: Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1986). Reprint of the 1982 edition

  36. König, B., Mika-Michalski, C.: (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras. In: Schewe and Zhang [51], pp. 37:1–37:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.37. http://drops.dagstuhl.de/opus/volltexte/2018/9575/. 29th International Conference on Concurrency Theory, September 4–7, 2018, Beijing, China

  37. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theor. Comput. Sci. 327(1–2), 109–134 (2004). https://doi.org/10.1016/j.tcs.2004.07.023

    Article  MathSciNet  MATH  Google Scholar 

  38. Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103(2), 151–161 (1968). https://doi.org/10.1007/BF01110627

    Article  MathSciNet  MATH  Google Scholar 

  39. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matemàtico e Fisico di Milano 43(1), 135–166 (1973). https://doi.org/10.1007/bf02924844. Republished in: Reprints in Theory and Applications of Categories (1), 1–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Linton, F.E.J.: Coequalizers in categories of algebras. In: Eckmann, B. (ed.) Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematics, vol. 80, pp. 75–90. Springer, Berlin (1969). https://doi.org/10.1007/bfb0083082. http://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html

  41. Michael, E.: Topologies on spaces of subsets. Trans. Am. Math. Soc. 71(1), 152–182 (1951). https://doi.org/10.1090/S0002-9947-1951-0042109-4

    Article  MathSciNet  MATH  Google Scholar 

  42. Nachbin, L.: Topology and Order. No. 4 in Van Nostrand Mathematical Studies. D. Van Nostrand, Princeton, N.J.-Toronto, Ont.-London (1965). Translated from the Portuguese by Lulu Bechtolsheim

  43. Nora, P.: Kleisli dualities and Vietoris coalgebras. Ph.D. thesis, University of Aveiro (2019)

  44. Pompeiu, D.: Sur la continuité des fonctions de variables complexes. Annales de la Faculté des Sciences de l’Université de Toulouse pour les Sciences Mathématiques et les Sciences Physiques 2ième Série 7(3), 265–315 (1905). https://doi.org/10.5802/afst.226

    Article  MATH  Google Scholar 

  45. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2(2), 186–190 (1970). https://doi.org/10.1112/blms/2.2.186

    Article  MathSciNet  MATH  Google Scholar 

  46. Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. Third Ser. 24(3), 507–530 (1972). https://doi.org/10.1112/plms/s3-24.3.507

    Article  MathSciNet  MATH  Google Scholar 

  47. Raney, G.N.: Completely distributive complete lattices. Proc. Am. Math. Soc. 3(5), 677–680 (1952). https://doi.org/10.1090/s0002-9939-1952-0052392-3

    Article  MathSciNet  MATH  Google Scholar 

  48. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000). https://doi.org/10.1016/s0304-3975(00)00056-6

    Article  MathSciNet  MATH  Google Scholar 

  49. Schalk, A.: Algebras for generalized power constructions. Ph.D. thesis, Technische Hochschule Darmstadt (1993). http://www.cs.man.ac.uk/~schalk/publ/diss.ps.gz

  50. Schewe, S., Zhang, L. (eds.): CONCUR 2018, LIPICS, vol. 118. Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH, Wadern/Saarbruecken, Germany (2018). 29th International Conference on Concurrency Theory, September 4–7, 2018, Beijing, China

  51. Seal, G.J.: Canonical and op-canonical lax algebras. Theory and Applications of Categories 14(10), 221–243 (2005). http://www.tac.mta.ca/tac/volumes/14/10/14-10abs.html

  52. Stubbe, I.: “Hausdorff distance” via conical cocompletion. Cahiers de Topologie et Géométrie Différentielle Catégoriques 51(1), 51–76 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Stubbe, I.: An introduction to quantaloid-enriched categories. Fuzzy Sets Syst. 256, 95–116 (2014). https://doi.org/10.1016/j.fss.2013.08.009. Special Issue on Enriched Category Theory and Related Topics (Selected papers from the \(33^{\text{ rd }}\) Linz Seminar on Fuzzy Set Theory, 2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tholen, W.: Ordered topological structures. Topol. Appl. 156(12), 2148–2157 (2009). https://doi.org/10.1016/j.topol.2009.03.038

    Article  MathSciNet  MATH  Google Scholar 

  55. Turi, D., Rutten, J.: On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces. Math. Struct. Comput. Sci. 8(5), 481–540 (1998). https://doi.org/10.1017/S0960129598002588

    Article  MathSciNet  MATH  Google Scholar 

  56. Waterhouse, W.C.: An empty inverse limit. Proc. Am. Math. Soc. 36(2), 618 (1972). https://doi.org/10.1090/s0002-9939-1972-0309047-x

    Article  MathSciNet  MATH  Google Scholar 

  57. van Breugel, F., Hermida, C., Makkai, M., Worrell, J.: An accessible approach to behavioural pseudometrics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages and Programming, pp. 1018–1030. Springer, Berlin (2005). https://doi.org/10.1007/11523468_82. Proceedings of the 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11–15, 2005

  58. Wild, P., Schröder, L., Pattinson, D., König, B.: A van Benthem Theorem for Fuzzy Modal Logic. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18). ACM Press (2018). https://doi.org/10.1145/3209108.3209180

Download references

Acknowledgements

We are grateful to Renato Neves for many fruitful discussions on the topic of the paper, without his input this work would not exist. We would like to thank the referee for her/his valuable critics and suggestions which helped us to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hofmann.

Additional information

Communicated by M. M. Clementino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is financed by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT—Fundação para a Ciência e a Tecnologia, within Project POCI-01-0145-FEDER-030947, and Project UID/MAT/04106/2019 (CIDMA).

Appendix

Appendix

In this section we collect some facts about \({\mathcal {V}}\)-categories and \({\mathcal {V}}\)-functors, where \({\mathcal {V}}\) is a quantale; for more information we refer to [39, 53]. Furthermore, we present some useful properties of the reflector into the category of separated \({\mathcal {V}}\)-categories that follow from standard arguments, but seem to be absent from the literature.

Definition A.1

Let \({\mathcal {V}}\) be a commutative and unital quantale. A \({\mathcal {V}}\)-category is a pair (Xa) consisting of a set X and a map \(a :X\times X\rightarrow {\mathcal {V}}\) satisfying

$$\begin{aligned} k\le a(x,x)&\text {and}&a(x,y)\otimes a(y,z)\le a(x,z), \end{aligned}$$

for all \(x,y,z\in X\). Given \({\mathcal {V}}\)-categories (Xa) and (Yb), a \({\mathcal {V}}\)-functor \(f :(X,a)\rightarrow (Y,b)\) is a map \(f :X\rightarrow Y\) such that

$$\begin{aligned} a(x,y) \le b(f(x),f(y)), \end{aligned}$$

for all \(x,y \in X\).

In particular, the quantale \({\mathcal {V}}\) becomes a \({\mathcal {V}}\)-category with structure \(\hom :{\mathcal {V}}\times {\mathcal {V}}\rightarrow {\mathcal {V}}\). We refer to [53] for a list of examples of quantales \({\mathcal {V}}\) and the corresponding categories \({\mathcal {V}}\text {-}\textsf {Cat}\) of \({\mathcal {V}}\)-categories and \({\mathcal {V}}\)-functors.

For every \({\mathcal {V}}\)-category (Xa), \(a^\circ (x,y)=a(y,x)\) defines another \({\mathcal {V}}\)-category structure on X, and the \({\mathcal {V}}\)-category \((X,a)^\text {op}:=(X,a^\circ )\) is called the dual of (Xa). A \({\mathcal {V}}\)-category (Xa) is called symmetric whenever \((X,a)=(X,a)^\text {op}\).

Clearly, \({\mathcal {V}}\)-categories and \({\mathcal {V}}\)-functors define a category, denoted as \({\mathcal {V}}\text {-}\textsf {Cat}\). The full subcategory of \({\mathcal {V}}\text {-}\textsf {Cat}\) defined by all symmetric \({\mathcal {V}}\)-categories is denoted as \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\).

Remark A.2

Given \({\mathcal {V}}\)-categories (Xa) and (Yb), we define the tensor product of (Xa) and (Yb) to be the \({\mathcal {V}}\)-category \((X,a) \otimes (Y,b) = (X \times Y, a \otimes b)\), with

$$\begin{aligned} a \otimes b ((x,y),(x',y')) = a(x,x') \otimes b(y,y'). \end{aligned}$$

This operation makes \({\mathcal {V}}\text {-}\textsf {Cat}\) a symmetric monoidal closed category, where the internal \(\hom \) of (Xa) and (Yb) is the \({\mathcal {V}}\)-category \([(X,a), (Y,b)] = ({\mathcal {V}}\text {-}\textsf {Cat}((X,a),(X,b)), [-,-])\), with

$$\begin{aligned} {[}f,g] = \bigwedge _{x \in X} b(f(x), g(x)). \end{aligned}$$

We note that [(Xa), (Yb)] is a \({\mathcal {V}}\)-subcategory of the X-fold product \((Y,b)^X\) of (Yb).

The following propositions are particularly useful to construct \({\mathcal {V}}\)-functors when combined with the fact that \({\mathcal {V}}\text {-}\textsf {Cat}\) is symmetrical monoidal closed.

Proposition A.3

For every set I, the assignments \(f \mapsto \bigvee _{i \in I} f(i)\) and \(f \mapsto \bigwedge _{i \in I} f(i)\) define \({\mathcal {V}}\)-functors of type \({\mathcal {V}}^I\rightarrow {\mathcal {V}}\).

Proposition A.4

For every \({\mathcal {V}}\)-category (Xa), the map \(a :(X,a)^\text {op}\otimes (X,a) \rightarrow ({\mathcal {V}}, \hom )\) is a \({\mathcal {V}}\)-functor.

The category \({\mathcal {V}}\text {-}\textsf {Cat}\) is well behaved regarding (co)limits.

Theorem A.5

The canonical forgetful functor \({\mathcal {V}}\text {-}\textsf {Cat}\rightarrow \textsf {Set}\) is topological. For a structured cone \((f_i :X\rightarrow (X_i,a_i))\), the initial lift (Xa) is given by

$$\begin{aligned} a(x,y) = \bigwedge _{i\in I}a_i(f_i(x),f_i(y)), \end{aligned}$$

for all \(x,y\in X\). Moreover, \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\) is closed in \({\mathcal {V}}\text {-}\textsf {Cat}\) under initial cones; therefore the canonical forgetful functor \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\rightarrow \textsf {Set}\) is topological as well, and the inclusion functor \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\hookrightarrow {\mathcal {V}}\text {-}\textsf {Cat}\) has a left adjoint.

We also recall that \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\hookrightarrow {\mathcal {V}}\text {-}\textsf {Cat}\) has a concrete right adjoint which sends the \({\mathcal {V}}\)-category (Xa) to its symmetrisation \((X,a_s)\) given by

$$\begin{aligned} a_s(x,y) = a(x,y) \wedge a(y,x), \end{aligned}$$

for all \(x,y\in X\).

Every \({\mathcal {V}}\)-category (Xa) carries a natural order defined by

$$\begin{aligned} x\le y \text { whenever } k\le a(x,y), \end{aligned}$$

which can be extended pointwise to \({\mathcal {V}}\)-functors making \({\mathcal {V}}\text {-}\textsf {Cat}\) a 2-category. The natural order of \({\mathcal {V}}\)-categories defines a faithful functor \({\mathcal {V}}\text {-}\textsf {Cat}\rightarrow \textsf {Ord}\). A \({\mathcal {V}}\)-category is called separated whenever its underlying ordered set is anti-symmetric, and we denote by \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) the full subcategory of \({\mathcal {V}}\text {-}\textsf {Cat}\) defined by all separated \({\mathcal {V}}\)-categories. Tautologically, an ordered set is separated if and only if it is anti-symmetric.

Theorem A.6

\({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) is closed in \({\mathcal {V}}\text {-}\textsf {Cat}\) under monocones. Hence, the forgetful functor \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\rightarrow \textsf {Set}\) is mono-topological and the inclusion functor \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\hookrightarrow {\mathcal {V}}\text {-}\textsf {Cat}\) has a left adjoint.

Let us describe the left adjoint \(S :{\mathcal {V}}\text {-}\textsf {Cat}\rightarrow {\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) of \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\hookrightarrow {\mathcal {V}}\text {-}\textsf {Cat}\). To do so, consider a \({\mathcal {V}}\)-category (Xa). Then

$$\begin{aligned} x\sim y \qquad \text {whenever}\qquad x\le y\quad \text {and}\quad y\le x \end{aligned}$$

defines an equivalence relation on X, and the quotient set \(X/{\sim }\) becomes a \({\mathcal {V}}\)-category \((X/{\sim },{\widetilde{a}})\) by putting

$$\begin{aligned} {\widetilde{a}}([x],[y])=a(x,y); \end{aligned}$$
(A.1)

this is indeed independent of the choice of representants of the equivalence classes. Then the projection map

$$\begin{aligned} q_{(X,a)} :X \longrightarrow X/{\sim },\,x\longmapsto [x] \end{aligned}$$

is a \({\mathcal {V}}\)-functor \(q_{(X,a)} :(X,a)\rightarrow (X/{\sim },{\widetilde{a}})\), it is indeed the unit of this adjunction at (Xa). Furthermore, by (A.1), \(q_{(X,a)} :(X,a)\rightarrow (X/{\sim },{\widetilde{a}})\) is a universal quotient and initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat}\rightarrow \textsf {Set}\).

Lemma A.7

A cone \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) in \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) is initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\rightarrow \textsf {Set}\) if and only if

$$\begin{aligned} a(x,y)=\bigwedge _{i\in I}a_i(f_i(x),f_i(y)), \end{aligned}$$
(A.2)

for all \(x,y\in X\).

Proof

Clearly, if (A.2) is satisfied then \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) is initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\rightarrow \textsf {Set}\) since it is initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat} \rightarrow \textsf {Set}\). Suppose now that \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) is initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\rightarrow \textsf {Set}\). Fix \(x,y\in X\). Then

$$\begin{aligned} a(x,y) \le \bigwedge _{i\in I}a_i(f_i(x),f_i(y))=u \end{aligned}$$

because \(f_i :(X,a) \rightarrow (X_i, a_i)\) is a \({\mathcal {V}}\)-functor for every \(i \in I\). It is left to show that \(u\le a(x,y)\). This is certainly true if \(u=\bot \); assume now that \(\bot <u\). Let \(2_u\) be the separated \({\mathcal {V}}\)-category with underlying set \(\{0,1\}\) and structure \(a_u\) defined by

$$\begin{aligned} a_u(0,1)=u,\quad a_u(0,0)=a_u(1,1)=k,\quad \text {and}\quad a_u(1,0)=\bot . \end{aligned}$$

Consider \(h :\{0,1\}\rightarrow X\) with \(h(0)=x\) and \(h(1)=y\). Then \(f_i\cdot h\) is a \({\mathcal {V}}\)-functor, for every \(i\in I\). Hence, since \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) is initial, \(h :2_u\rightarrow X\) is a \({\mathcal {V}}\)-functor, which implies \(u\le a(x,y)\). \(\square \)

Corollary A.8

The functor \(\textsf {S}:{\mathcal {V}}\text {-}\textsf {Cat}\rightarrow {\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) preserves initial cones with respect to the canonical forgetful functors.

Proof

Let \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) be an initial cone with respect to \({\mathcal {V}}\text {-}\textsf {Cat} \rightarrow \textsf {Set}\). Then, for every \([x],[y] \in \textsf {S}(X,a)=(X/{\sim },{\widetilde{a}})\), and with \(\textsf {S}(X_i,a_i)=(X/{\sim },{\widetilde{a}}_i)\) for all \(i\in I\),

$$\begin{aligned} {\widetilde{a}}([x],[y])= & {} a(x,y) = \bigwedge _{i\in I} a_i(f_i(x),f_i(y)) = \bigwedge _{i\in I} \widetilde{a_i}([f_i(x)],[f_i(y)]) \\= & {} \bigwedge _{i\in I} \widetilde{a_i}(\textsf {S}f_i([x]),\textsf {S}f_i([y])). \end{aligned}$$

Therefore, the claim follows by Lemma A.7. \(\square \)

Remark A.9

In [17] it is shown that \(\textsf {S}:{\mathcal {V}}\text {-}\textsf {Cat}\rightarrow {\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) preserves finite products. However, \(\textsf {S}\) does not preserve limits in general, in particular, \(\textsf {S}\) does not preserve codirected limits. For instance, consider the “empty limit” of [56] and equip every \(X_i\) (\(i\in I\)) with the indiscrete \({\mathcal {V}}\)-category structure \(a_i\) where \(a_i(x,y)=\top \) for all \(x,y\in X_i\). Then \(S(X_i,a_i)\) has exactly one element, for each \(i\in I\); hence the limit of the corresponding diagram in \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) has one element.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, D., Nora, P. Hausdorff Coalgebras. Appl Categor Struct 28, 773–806 (2020). https://doi.org/10.1007/s10485-020-09597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-020-09597-8

Keywords