Abstract
As composites of constant, finite (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of \(\textsf {Set}\)-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider “powerset-like” functors based on the Hausdorff \({\mathcal {V}}\)-category structure. As a starting point, we show that for a lifting of a \(\textsf {Set}\)-functor to a topological category \(\textsf {X}\) over \(\textsf {Set}\) that commutes with the forgetful functor, the corresponding category of coalgebras over \(\textsf {X}\) is topological over the category of coalgebras over \(\textsf {Set}\) and, therefore, it is “as complete” but cannot be “more complete”. Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these “negative” results, we combine quantale-enriched categories and topology à la Nachbin. Besides studying some basic properties of these categories, we investigate “powerset-like” functors which simultaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of “Kripke polynomial” functors are (co)complete.
Similar content being viewed by others
Notes
We thank Adriana Balan for calling our attention to [18].
References
Abramsky, S.: A Cook’s Tour of the Finitary Non-Well-Founded Sets. In: Artemov, S., Barringer, H., Garcez, A.A. (eds.) We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 1–18. College Publications, London (2005)
Abramsky, S., Jung, A.: Domain Theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science: Semantic Structures, vol. 3, pp. 1–168. Oxford University Press, Oxford (1995)
Adámek, J.: Introduction to coalgebra. Theory Appl. Categ. 14(8), 157–199 (2005)
Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy of cats. Pure Applied Mathematics (New York). Wiley, New York (1990). http://tac.mta.ca/tac/reprints/articles/17/tr17abs.html. Republished in: Reprints in Theory and Applications of Categories, No. 17 (2006) pp. 1–507
Akhvlediani, A., Clementino, M.M., Tholen, W.: On the categorical meaning of Hausdorff and Gromov distances, I. Topol. Appl. 157(8), 1275–1295 (2010). https://doi.org/10.1016/j.topol.2009.06.018
Băbuş, O., Kurz, A.: On the logic of generalised metric spaces. In: Hasuo, I. (ed.) Coalgebraic Methods in Computer Science, pp. 136–155. Springer (2016). https://doi.org/10.1007/978-3-319-40370-0_9
Balan, A., Kurz, A., Velebil, J.: Extending set functors to generalised metric spaces. Log. Methods Comput. Sci. 15(1) (2019)
Baldan, P., Bonchi, F., Kerstan, H., König, B.: Coalgebraic behavioral metrics. Log. Methods Comput. Sci. 14(3), 1860–5974 (2018). https://doi.org/10.23638/lmcs-14(3:20)2018
Barr, M.: Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 114(2), 299–315 (1993). https://doi.org/10.1016/0304-3975(93)90076-6
Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, New York (1985). https://doi.org/10.1007/978-1-4899-0021-0. http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html. Republished in: Reprints in Theory and Applications of Categories, No. 12, 2005, pp. 1–288
Birsan, T., Tiba, D.: One hundred years since the introduction of the set distance by Dimitrie Pompeiu. In: Pandolfi, F., Ceragioli, A., Dontchev, H., Furuta, K., Marti, L. (eds.) System Modeling and Optimization, IFIP Advances in Information and Communication Technology, vol. 199, pp. 35–39. Springer (2006). https://doi.org/10.1007/0-387-33006-2_4. Proceedings of the 22nd IFIP TC7 Conference, July 18–22, 2005, Turin, Italy
Bonchi, F., König, B., Petrişan, D.: Up-To Techniques for Behavioural Metrics via Fibrations. In: Schewe and Zhang [51], pp. 17:1–17:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.17. http://drops.dagstuhl.de/opus/volltexte/2018/9555/. 29th International Conference on Concurrency Theory, September 4–7, 2018 - Beijing, China
Bonsangue, M., Rutten, J., Silva, A.: An algebra for Kripke polynomial coalgebras. In: 24th Annual IEEE Symposium on Logic in Computer Science, 11–14 August 2009, Los Angeles, CA, USA, pp. 49–58. IEEE (2009). https://doi.org/10.1109/LICS.2009.18
Bourbaki, N.: General topology, part I. Addison-Wesley, Hermann, Paris (1966). Chapters 1–4
Cantor, G.: Über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der Deutschen Mathematiker-Vereinigung 1, 75–78 (1891). http://mickindex.sakura.ne.jp/cantor/cnt_uFM_gm.html
Clementino, M.M., Hofmann, D.: Triquotient maps via ultrafilter convergence. Proc. Am. Math. Soc. 130(11), 3423–3431 (2002). https://doi.org/10.1090/S0002-9939-02-06472-9
Clementino, M.M., Hofmann, D., Ribeiro, W.: Cartesian closed exact completions in topology. J. Pure Appl. Algebra 224(2), 610–629 (2020). https://doi.org/10.1016/j.jpaa.2019.06.003
Dilworth, R.P., Gleason, A.M.: A generalized Cantor theorem. Proc. Am. Math. Soc. 13(5), 704–705 (1962). https://doi.org/10.1090/S0002-9939-1962-0144824-3
Engelking, R.: General topology, Sigma Series in Pure Mathematics, vol. 6, 2nd edn. Heldermann Verlag, Berlin (1989). Translated from the Polish by the author
Fawcett, B., Wood, R.J.: Constructive complete distributivity. I. Math. Proc. Camb. Philos. Soc. 107(1), 81–89 (1990). https://doi.org/10.1017/S0305004100068377
Flagg, R.C.: Completeness in continuity spaces. In: Seely, R.A.G. (ed.) Category Theory 1991: Proceedings of an International Summer Category Theory Meeting, held June 23–30, 1991, CMS Conference Proceedings, vol. 13. American Mathematical Society (1992)
Flagg, R.C.: Quantales and continuity spaces. Algebra Universalis 37(3), 257–276 (1997). https://doi.org/10.1007/s000120050018
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: A compendium of continuous lattices. Springer, Berlin (1980). https://doi.org/10.1007/978-3-642-67678-9
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511542725
Hausdorff, F.: Grundzüge der Mengenlehre. Veit & Comp, Leipzig (1914)
Hofmann, D.: Topological theories and closed objects. Adv. Math. 215(2), 789–824 (2007). https://doi.org/10.1016/j.aim.2007.04.013
Hofmann, D., Neves, R., Nora, P.: Limits in categories of Vietoris coalgebras. Math. Struct. Comput. Sci. 29(4), 552–587 (2019). https://doi.org/10.1017/S0960129518000269
Hofmann, D., Nora, P.: Enriched stone-type dualities. Adv. Math. 330, 307–360 (2018). https://doi.org/10.1016/j.aim.2018.03.010
Hofmann, D., Reis, C.D.: Probabilistic metric spaces as enriched categories. Fuzzy Sets Syst. 210, 1–21 (2013). https://doi.org/10.1016/j.fss.2012.05.005
Hofmann, D., Reis, C.D.: Convergence and quantale-enriched categories. Categ. Gen. Algebraic Struct. Appl. 9(1), 77–138 (2018). http://cgasa.sbu.ac.ir/article_58262.html
Hofmann, D., Seal, G.J., Tholen, W. (eds.): Monoidal Topology. A Categorical Approach to Order, Metric, and Topology, Encyclopedia of Mathematics and its Applications, vol. 153. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/cbo9781107517288. http://www.cambridge.org/pt/academic/subjects/mathematics/logic-categories-and-sets/monoidal-topology-categorical-approach-order-metric-and-topology. Authors: Maria Manuel Clementino, Eva Colebunders, Dirk Hofmann, Robert Lowen, Rory Lucyshyn-Wright, Gavin J. Seal and Walter Tholen
Hofmann, D., Tholen, W.: Lawvere completion and separation via closure. Appl. Categ. Struct. 18(3), 259–287 (2010). https://doi.org/10.1007/s10485-008-9169-9
Janelidze, G., Sobral, M.: Finite preorders and topological descent. I. J. Pure Appl. Algebra 175(1–3), 187–205 (2002). https://doi.org/10.1016/S0022-4049(02)00134-2. Special volume celebrating the \(70^{\text{ th }}\) birthday of Professor Max Kelly
Janelidze, G., Sobral, M.: Finite preorders and topological descent. II. étale descent. J. Pure Appl. Algebra 174(3), 303–309 (2002). https://doi.org/10.1016/S0022-4049(02)00046-4
Johnstone, P.T.: Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1986). Reprint of the 1982 edition
König, B., Mika-Michalski, C.: (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras. In: Schewe and Zhang [51], pp. 37:1–37:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.37. http://drops.dagstuhl.de/opus/volltexte/2018/9575/. 29th International Conference on Concurrency Theory, September 4–7, 2018, Beijing, China
Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theor. Comput. Sci. 327(1–2), 109–134 (2004). https://doi.org/10.1016/j.tcs.2004.07.023
Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103(2), 151–161 (1968). https://doi.org/10.1007/BF01110627
Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matemàtico e Fisico di Milano 43(1), 135–166 (1973). https://doi.org/10.1007/bf02924844. Republished in: Reprints in Theory and Applications of Categories (1), 1–37 (2002)
Linton, F.E.J.: Coequalizers in categories of algebras. In: Eckmann, B. (ed.) Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematics, vol. 80, pp. 75–90. Springer, Berlin (1969). https://doi.org/10.1007/bfb0083082. http://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html
Michael, E.: Topologies on spaces of subsets. Trans. Am. Math. Soc. 71(1), 152–182 (1951). https://doi.org/10.1090/S0002-9947-1951-0042109-4
Nachbin, L.: Topology and Order. No. 4 in Van Nostrand Mathematical Studies. D. Van Nostrand, Princeton, N.J.-Toronto, Ont.-London (1965). Translated from the Portuguese by Lulu Bechtolsheim
Nora, P.: Kleisli dualities and Vietoris coalgebras. Ph.D. thesis, University of Aveiro (2019)
Pompeiu, D.: Sur la continuité des fonctions de variables complexes. Annales de la Faculté des Sciences de l’Université de Toulouse pour les Sciences Mathématiques et les Sciences Physiques 2ième Série 7(3), 265–315 (1905). https://doi.org/10.5802/afst.226
Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2(2), 186–190 (1970). https://doi.org/10.1112/blms/2.2.186
Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. Third Ser. 24(3), 507–530 (1972). https://doi.org/10.1112/plms/s3-24.3.507
Raney, G.N.: Completely distributive complete lattices. Proc. Am. Math. Soc. 3(5), 677–680 (1952). https://doi.org/10.1090/s0002-9939-1952-0052392-3
Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000). https://doi.org/10.1016/s0304-3975(00)00056-6
Schalk, A.: Algebras for generalized power constructions. Ph.D. thesis, Technische Hochschule Darmstadt (1993). http://www.cs.man.ac.uk/~schalk/publ/diss.ps.gz
Schewe, S., Zhang, L. (eds.): CONCUR 2018, LIPICS, vol. 118. Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH, Wadern/Saarbruecken, Germany (2018). 29th International Conference on Concurrency Theory, September 4–7, 2018, Beijing, China
Seal, G.J.: Canonical and op-canonical lax algebras. Theory and Applications of Categories 14(10), 221–243 (2005). http://www.tac.mta.ca/tac/volumes/14/10/14-10abs.html
Stubbe, I.: “Hausdorff distance” via conical cocompletion. Cahiers de Topologie et Géométrie Différentielle Catégoriques 51(1), 51–76 (2010)
Stubbe, I.: An introduction to quantaloid-enriched categories. Fuzzy Sets Syst. 256, 95–116 (2014). https://doi.org/10.1016/j.fss.2013.08.009. Special Issue on Enriched Category Theory and Related Topics (Selected papers from the \(33^{\text{ rd }}\) Linz Seminar on Fuzzy Set Theory, 2012)
Tholen, W.: Ordered topological structures. Topol. Appl. 156(12), 2148–2157 (2009). https://doi.org/10.1016/j.topol.2009.03.038
Turi, D., Rutten, J.: On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces. Math. Struct. Comput. Sci. 8(5), 481–540 (1998). https://doi.org/10.1017/S0960129598002588
Waterhouse, W.C.: An empty inverse limit. Proc. Am. Math. Soc. 36(2), 618 (1972). https://doi.org/10.1090/s0002-9939-1972-0309047-x
van Breugel, F., Hermida, C., Makkai, M., Worrell, J.: An accessible approach to behavioural pseudometrics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages and Programming, pp. 1018–1030. Springer, Berlin (2005). https://doi.org/10.1007/11523468_82. Proceedings of the 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11–15, 2005
Wild, P., Schröder, L., Pattinson, D., König, B.: A van Benthem Theorem for Fuzzy Modal Logic. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18). ACM Press (2018). https://doi.org/10.1145/3209108.3209180
Acknowledgements
We are grateful to Renato Neves for many fruitful discussions on the topic of the paper, without his input this work would not exist. We would like to thank the referee for her/his valuable critics and suggestions which helped us to improve the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. M. Clementino.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is financed by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT—Fundação para a Ciência e a Tecnologia, within Project POCI-01-0145-FEDER-030947, and Project UID/MAT/04106/2019 (CIDMA).
Appendix
Appendix
In this section we collect some facts about \({\mathcal {V}}\)-categories and \({\mathcal {V}}\)-functors, where \({\mathcal {V}}\) is a quantale; for more information we refer to [39, 53]. Furthermore, we present some useful properties of the reflector into the category of separated \({\mathcal {V}}\)-categories that follow from standard arguments, but seem to be absent from the literature.
Definition A.1
Let \({\mathcal {V}}\) be a commutative and unital quantale. A \({\mathcal {V}}\)-category is a pair (X, a) consisting of a set X and a map \(a :X\times X\rightarrow {\mathcal {V}}\) satisfying
for all \(x,y,z\in X\). Given \({\mathcal {V}}\)-categories (X, a) and (Y, b), a \({\mathcal {V}}\)-functor \(f :(X,a)\rightarrow (Y,b)\) is a map \(f :X\rightarrow Y\) such that
for all \(x,y \in X\).
In particular, the quantale \({\mathcal {V}}\) becomes a \({\mathcal {V}}\)-category with structure \(\hom :{\mathcal {V}}\times {\mathcal {V}}\rightarrow {\mathcal {V}}\). We refer to [53] for a list of examples of quantales \({\mathcal {V}}\) and the corresponding categories \({\mathcal {V}}\text {-}\textsf {Cat}\) of \({\mathcal {V}}\)-categories and \({\mathcal {V}}\)-functors.
For every \({\mathcal {V}}\)-category (X, a), \(a^\circ (x,y)=a(y,x)\) defines another \({\mathcal {V}}\)-category structure on X, and the \({\mathcal {V}}\)-category \((X,a)^\text {op}:=(X,a^\circ )\) is called the dual of (X, a). A \({\mathcal {V}}\)-category (X, a) is called symmetric whenever \((X,a)=(X,a)^\text {op}\).
Clearly, \({\mathcal {V}}\)-categories and \({\mathcal {V}}\)-functors define a category, denoted as \({\mathcal {V}}\text {-}\textsf {Cat}\). The full subcategory of \({\mathcal {V}}\text {-}\textsf {Cat}\) defined by all symmetric \({\mathcal {V}}\)-categories is denoted as \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\).
Remark A.2
Given \({\mathcal {V}}\)-categories (X, a) and (Y, b), we define the tensor product of (X, a) and (Y, b) to be the \({\mathcal {V}}\)-category \((X,a) \otimes (Y,b) = (X \times Y, a \otimes b)\), with
This operation makes \({\mathcal {V}}\text {-}\textsf {Cat}\) a symmetric monoidal closed category, where the internal \(\hom \) of (X, a) and (Y, b) is the \({\mathcal {V}}\)-category \([(X,a), (Y,b)] = ({\mathcal {V}}\text {-}\textsf {Cat}((X,a),(X,b)), [-,-])\), with
We note that [(X, a), (Y, b)] is a \({\mathcal {V}}\)-subcategory of the X-fold product \((Y,b)^X\) of (Y, b).
The following propositions are particularly useful to construct \({\mathcal {V}}\)-functors when combined with the fact that \({\mathcal {V}}\text {-}\textsf {Cat}\) is symmetrical monoidal closed.
Proposition A.3
For every set I, the assignments \(f \mapsto \bigvee _{i \in I} f(i)\) and \(f \mapsto \bigwedge _{i \in I} f(i)\) define \({\mathcal {V}}\)-functors of type \({\mathcal {V}}^I\rightarrow {\mathcal {V}}\).
Proposition A.4
For every \({\mathcal {V}}\)-category (X, a), the map \(a :(X,a)^\text {op}\otimes (X,a) \rightarrow ({\mathcal {V}}, \hom )\) is a \({\mathcal {V}}\)-functor.
The category \({\mathcal {V}}\text {-}\textsf {Cat}\) is well behaved regarding (co)limits.
Theorem A.5
The canonical forgetful functor \({\mathcal {V}}\text {-}\textsf {Cat}\rightarrow \textsf {Set}\) is topological. For a structured cone \((f_i :X\rightarrow (X_i,a_i))\), the initial lift (X, a) is given by
for all \(x,y\in X\). Moreover, \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\) is closed in \({\mathcal {V}}\text {-}\textsf {Cat}\) under initial cones; therefore the canonical forgetful functor \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\rightarrow \textsf {Set}\) is topological as well, and the inclusion functor \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\hookrightarrow {\mathcal {V}}\text {-}\textsf {Cat}\) has a left adjoint.
We also recall that \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sym}\hookrightarrow {\mathcal {V}}\text {-}\textsf {Cat}\) has a concrete right adjoint which sends the \({\mathcal {V}}\)-category (X, a) to its symmetrisation \((X,a_s)\) given by
for all \(x,y\in X\).
Every \({\mathcal {V}}\)-category (X, a) carries a natural order defined by
which can be extended pointwise to \({\mathcal {V}}\)-functors making \({\mathcal {V}}\text {-}\textsf {Cat}\) a 2-category. The natural order of \({\mathcal {V}}\)-categories defines a faithful functor \({\mathcal {V}}\text {-}\textsf {Cat}\rightarrow \textsf {Ord}\). A \({\mathcal {V}}\)-category is called separated whenever its underlying ordered set is anti-symmetric, and we denote by \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) the full subcategory of \({\mathcal {V}}\text {-}\textsf {Cat}\) defined by all separated \({\mathcal {V}}\)-categories. Tautologically, an ordered set is separated if and only if it is anti-symmetric.
Theorem A.6
\({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) is closed in \({\mathcal {V}}\text {-}\textsf {Cat}\) under monocones. Hence, the forgetful functor \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\rightarrow \textsf {Set}\) is mono-topological and the inclusion functor \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\hookrightarrow {\mathcal {V}}\text {-}\textsf {Cat}\) has a left adjoint.
Let us describe the left adjoint \(S :{\mathcal {V}}\text {-}\textsf {Cat}\rightarrow {\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) of \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\hookrightarrow {\mathcal {V}}\text {-}\textsf {Cat}\). To do so, consider a \({\mathcal {V}}\)-category (X, a). Then
defines an equivalence relation on X, and the quotient set \(X/{\sim }\) becomes a \({\mathcal {V}}\)-category \((X/{\sim },{\widetilde{a}})\) by putting
this is indeed independent of the choice of representants of the equivalence classes. Then the projection map
is a \({\mathcal {V}}\)-functor \(q_{(X,a)} :(X,a)\rightarrow (X/{\sim },{\widetilde{a}})\), it is indeed the unit of this adjunction at (X, a). Furthermore, by (A.1), \(q_{(X,a)} :(X,a)\rightarrow (X/{\sim },{\widetilde{a}})\) is a universal quotient and initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat}\rightarrow \textsf {Set}\).
Lemma A.7
A cone \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) in \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) is initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\rightarrow \textsf {Set}\) if and only if
for all \(x,y\in X\).
Proof
Clearly, if (A.2) is satisfied then \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) is initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\rightarrow \textsf {Set}\) since it is initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat} \rightarrow \textsf {Set}\). Suppose now that \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) is initial with respect to \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\rightarrow \textsf {Set}\). Fix \(x,y\in X\). Then
because \(f_i :(X,a) \rightarrow (X_i, a_i)\) is a \({\mathcal {V}}\)-functor for every \(i \in I\). It is left to show that \(u\le a(x,y)\). This is certainly true if \(u=\bot \); assume now that \(\bot <u\). Let \(2_u\) be the separated \({\mathcal {V}}\)-category with underlying set \(\{0,1\}\) and structure \(a_u\) defined by
Consider \(h :\{0,1\}\rightarrow X\) with \(h(0)=x\) and \(h(1)=y\). Then \(f_i\cdot h\) is a \({\mathcal {V}}\)-functor, for every \(i\in I\). Hence, since \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) is initial, \(h :2_u\rightarrow X\) is a \({\mathcal {V}}\)-functor, which implies \(u\le a(x,y)\). \(\square \)
Corollary A.8
The functor \(\textsf {S}:{\mathcal {V}}\text {-}\textsf {Cat}\rightarrow {\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) preserves initial cones with respect to the canonical forgetful functors.
Proof
Let \((f_i :(X,a)\rightarrow (X_i,a_i))_{i\in I}\) be an initial cone with respect to \({\mathcal {V}}\text {-}\textsf {Cat} \rightarrow \textsf {Set}\). Then, for every \([x],[y] \in \textsf {S}(X,a)=(X/{\sim },{\widetilde{a}})\), and with \(\textsf {S}(X_i,a_i)=(X/{\sim },{\widetilde{a}}_i)\) for all \(i\in I\),
Therefore, the claim follows by Lemma A.7. \(\square \)
Remark A.9
In [17] it is shown that \(\textsf {S}:{\mathcal {V}}\text {-}\textsf {Cat}\rightarrow {\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) preserves finite products. However, \(\textsf {S}\) does not preserve limits in general, in particular, \(\textsf {S}\) does not preserve codirected limits. For instance, consider the “empty limit” of [56] and equip every \(X_i\) (\(i\in I\)) with the indiscrete \({\mathcal {V}}\)-category structure \(a_i\) where \(a_i(x,y)=\top \) for all \(x,y\in X_i\). Then \(S(X_i,a_i)\) has exactly one element, for each \(i\in I\); hence the limit of the corresponding diagram in \({\mathcal {V}}\text {-}\textsf {Cat}_\text {sep}\) has one element.
Rights and permissions
About this article
Cite this article
Hofmann, D., Nora, P. Hausdorff Coalgebras. Appl Categor Struct 28, 773–806 (2020). https://doi.org/10.1007/s10485-020-09597-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-020-09597-8