Skip to main content
Log in

Algebra and Geometry of Rewriting

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We present various results of the last 20 years converging towards a homotopical theory of computation. This new theory is based on two crucial notions: polygraphs (introduced by Albert Burroni) and polygraphic resolutions (introduced by François Métayer). There are two motivations for such a theory:

  • Providing invariants of computational systems to study those systems and prove properties about them;

  • Finding new methods to make computations in algebraic structures coming from geometry or topology.

This means that this theory should be relevant for mathematicians as well as for theoretical computer scientists, since both may find useful tools or concepts for their own domain coming from the other one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, K.S.: Cohomology of Groups. Springer, Berlin (1982)

    MATH  Google Scholar 

  2. Burroni, A.: Higher dimensional word problems with applications to equational logic. Theoret. Comput. Sci. 115, 43–62 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burroni, A.: A new calculation of the Orientals of Street. In: Conference Given in Oxford in April 2000. Available on http://www.math.jussieu.fr/~burroni/

  4. Cremanns, R., Otto, F.: Finite derivation type implies the homological finiteness condition FP 3. J. Symbolic Comput. 18, 91–12 (1994)

    Article  MathSciNet  Google Scholar 

  5. Cremanns, R., Otto, F.: For groups the property of finite derivation type is equivalent to the homological finiteness condition FP 3. J. Symbolic Comput. 22, 155–177 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dehornoy, P., Lafont, Y.: Homology of gaussian groups. Ann. Inst. Fourier 53(2), 489–540 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Guiraud, Y.: Termination orders for 3-dimensional rewriting. J. Pure Appl. Algebra 207(2), 341–37 (2006)

    Article  MathSciNet  Google Scholar 

  8. Katsura, M., Kobayashi, Y.: Constructing finitely presented monoids which have no finite complete presentation. Semigroup Forum 54, 292–302 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kapur, D., Narendran, P.: The Knuth–Bendix completion procedure and Thue systems. SIAM J. Comput. 14(4), 1052–1072 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kapur, D., Narendran, P.: A finite Thue system with decidable word problem and without equivalent finite canonical system. Theoret. Comput. Sci. 35, 337–344 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kobayashi, Y.: Complete rewriting systems and homology of monoid algebras. J. Pure Appl. Algebra 65(3), 263–275 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lafont, Y.: A new finiteness condition for monoids presented by complete rewriting systems (after Craig Squier). J. Pure Appl. Algebra 98(3), 229–244 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lafont, Y.: Towards an algebraic theory of Boolean circuits. J. Pure Appl. Algebra 184(2–3), 257–310 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lafont, Y., Prouté, A.: Church–Rosser property and homology of monoids. Math. Structures Comput. Sci. 1(3), 297–326 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mac Lane, S.: Homology. Springer, Berlin (1963)

    Google Scholar 

  16. Métayer, F.: Resolutions by polygraphs. Theory Appl. Categ. 1(7), 148–184 (2003)

    Google Scholar 

  17. Power, J.: An n-categorical pasting theorem. Proceedings of Category Theory, Como 1990. Springer Lecture Notes in Mathematics, 1488, 326–358 (1991)

  18. Squier, C., Otto, F., Kobayashi, Y.: A finiteness condition for rewriting systems. Theoret. Comput. Sci. 131, 271–294 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Spanier, C.C.: Algebraic Topology. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  20. Squier, C.: Word problems and a homological finiteness condition for monoids. J. Pure Appl. Algebra 49, 201–217 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Street, R.: The algebra of oriented simplexes. J. Pure Appl. Algebra 49, 283–335 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Lafont.

Additional information

This work has been partly supported by project GEOCAL (Géométrie du Calcul, ACI Nouvelles Interfaces des Mathématiques) and by project INVAL (Invariants algébriques des systèmes informatiques, ANR).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafont, Y. Algebra and Geometry of Rewriting. Appl Categor Struct 15, 415–437 (2007). https://doi.org/10.1007/s10485-007-9083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-007-9083-6

Keywords

Mathematics Subject Classifications (2000)

Navigation