Skip to main content
Log in

Rouxiella aceris sp. nov., isolated from tree sap and the emended description of the genus Rouxiella

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

A Correction to this article was published on 25 August 2021

This article has been updated

Abstract

Polyphasic taxonomic studies were performed for the seven strains, which were isolated from sap extracted from Acer pictum in Mt. Halla in Jeju, Republic of Korea. Cells of all the isolates were Gram-reaction-negative, facultatively anaerobic, short rods and contained the major isoprenoid quinone of Q-8, the predominant fatty acids of C16:0 and C17:0 cyclo and the major polar lipids including phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid. The G + C contents of the genomic DNAs were 50.6–51.3%.The 16S rRNA gene-based phylogeny exhibited that the seven isolates formed two distinct sublines within the family Yersiniaceae. In the 92 core gene analysis, strain SAP-1T formed a subline at the base of radiation of the genus Rouxiella and its assignment to the genus Rouxiella was supported by high amino acid identity values (82.0–83.4%), albeit with sharing low 16S rRNA gene identities (96.0–96.9%). The average nucleotide identity and digital DNA-DNA hybridisation values together with phenotypic differences showed that strains SAP-1T, SAP-7, SAP-8 and SAP-13 belonged to a new species of the genus Rouxiella, while strains SAP-2, SAP-3 and SAP-27 were strains of Rouxiella silvae. On the basis of data obtained here, Rouxiella aceris sp. nov. (type strain, SAP-1T = KCTC 72599T = CCM 9078T) is proposed, with the emended description of the genus Rouxiella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  Google Scholar 

  • Adeolu M, Alnajar S, Naushed S, Gupta RS (2016) Genome-based phylogeny and taxonomy of the 'Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., MorganelLaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599

    Article  CAS  Google Scholar 

  • Bizio B (1823) Lettera di Bartolomeo Bizio al chiarissimo canonico Angelo Bellani sopra il fenomeno della polenta porporina. Biblioteca Italiana O Sia Giornale Di Letteratura, Scienze E Arti 30:275–295

    Google Scholar 

  • Ee R, Madhaiyan M, Ji L, Lim YL, Nor NM et al (2016) Chania multitudinisentens gen. nov., sp. nov., an N-acyl-homoserine-lactone-producing bacterium in the family Enterobacteriaceae isolated from landfill site soil. Int J Syst Evol Microbiol 66:2297–2304

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Grimont PAD, Farmer Iii JJ, Grimont F, Asbury MA, Brenner DJ et al (1983) Ewingella americana gen. nov., sp. nov., a new Enterobacteriaceae isolated from clinical specimens. Ann Microbiol (Paris) 134A:39–52

    CAS  Google Scholar 

  • Izard D, Gavini F, Trinel PA, Lecterc H (1979) Rahnella aquatilis, nouveau member de la family des Enterobacteriaceae. Ann Microbiol (Paris) 130:163–177

    CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, London, pp 115–144

    Google Scholar 

  • Le Flèche-Matéos A, Kügler JH, Hansen SH, Syldatk C, Hausmann R et al (2017) Rouxiella badensis sp. nov. and Rouxiella silvae sp. nov. isolated from peat bog soil and emendation description of the genus Rouxiella. Int J Syst Evol Microbiol 67:1255–1259

    Article  Google Scholar 

  • Le Flèche-Matéos A, Levast M, Lomprez F, Arnoux Y, Andonian C et al (2015) Rouxiella chamberiensis gen. nov., sp. nov., a member of the family Enterobacteriaceae isolated from parenteral nutrition bags. Int J Syst Evol Microbiol 65:1812–1818

    Article  Google Scholar 

  • Lee SD, Kim IS, Choe H, Kim J-S (2021) Acerihabitans arboris gen. nov., sp. nov., a new member of the family Pectobacteriaceae isolated from sap drawn from Acer pictum Int J Syst Evol Microbiol (In press)

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60

    Article  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Minnikin DE, Patal PV, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–107

    Article  CAS  Google Scholar 

  • Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    Article  CAS  Google Scholar 

  • Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al (2020) Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 70:4432–4450

    Article  CAS  Google Scholar 

  • Rochter M, Roselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:12196–19131

    Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe Megazine 9:111–118

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Article  Google Scholar 

  • Sutra L, Christen R, Bollet C, Simoneau P, Gardan L (2001) Samsonia erythrinae gen. nov., sp. nov., isolated from bark necrotic lesions of Erythrina sp., and discrimination of plant-pathogenic Enterobacteriaceae by phenotypic features. Int J Syst Evol Microbiol 51:1291–1304

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Van Loghem JJ (1944) The classification of plague-bacillus. Antonie van Leeuwenhoek J Microbiol Serol 10:15–16

    Article  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wirth JS, Whitman WB (2018) Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the six novel genera. Int J Syst Evol Microbiol 68:2393–2411

    Article  CAS  Google Scholar 

  • Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  Google Scholar 

  • Zhang CW, Zhang J, Zhao JJ, Zhao X, Zhao DF et al (2017) Serratia oryzae sp. nov., isolated from rice stems. Int J Syst Bacteriol 67:2928–2933

    Article  CAS  Google Scholar 

Download references

Funding

This research was carried out in part by a research grant supported from the Ministry of Food and Drug Safety, Korea (Grant No. MFDS2019-69).

Author information

Authors and Affiliations

Authors

Contributions

Bacterial isolation from tree sap was performed by Hong-Lim Yang. Data collection and analysis were performed by Soon Dong Lee and Hong-Lim Yang. The first draft of the manuscript was written by Soon Dong Lee. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soon Dong Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.D., Yang, H.L. & Kim, I.S. Rouxiella aceris sp. nov., isolated from tree sap and the emended description of the genus Rouxiella. Antonie van Leeuwenhoek 114, 1013–1024 (2021). https://doi.org/10.1007/s10482-021-01572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01572-0

Keywords

Navigation