Skip to main content
Log in

Micromonospora orduensis sp. nov., isolated from deep marine sediment

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinobacterial strain, designated S2509T, was isolated from marine sediment collected by a dredge at a depth of 45 m along Melet River offshore of the southern Black Sea coast, Ordu, Turkey. The cell wall peptidoglycan of strain was found to contain meso-diaminopimelic acid and 3-OH-diaminopimelic acid. The whole cell sugars detected were arabinose, glucose, rhamnose, ribose and xylose. The diagnostic phospholipids of strain S2509T were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, a glycolipid and two unidentified phospholipids. The predominant menaquinones were identified as MK-9(H8), MK-9(H6), MK-10(H8), MK-9(H4), MK-10(H4) and MK-10(H6). The major cellular fatty acids were found to be iso-C16:0, iso-C15:0 and 10-methyl C17:0. The taxonomic position of the strain was established using a polyphasic approach, showing that S2509T strain belongs to the genus Micromonospora. Phylogenetic analysis based on the 16S rRNA gene sequence of strain S2509T showed that it is closely related to the type strain of Micromonospora chokoriensis DSM 45160T (99.37% sequence similarity), and phylogenetically clustered with Micromonospora inaquosa LB39T (99.37%), Micromonospora lupini Lupac 14NT (99.16%), Micromonospora violae NEAU-zh8T (99.23%) and Micromonospora taraxaci NEAU-P5T (99.03%). The phylogenetic analysis based on the gyrB gene sequence of strain S2509T confirmed its close relationship with M. chokoriensis JCM 13247T (96.5% sequence similarity). Whole genome sequences confirmed by digital DNA-DNA hybridization analysis that the strain S2509T represents a novel species in the genus Micromonospora, for which the name Micromonospora orduensis sp. nov. is proposed. The type strain is S2509T (=DSM 45926T = KCTC 29201T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ara I, Kudo T (2007) Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. J Gen Appl Microbiol 53:29–37

    Article  CAS  PubMed  Google Scholar 

  • Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MDC, Sahin N, Smith DL, Kim KE, Peluso P, Deshpande S, Woyke T, Shapiro N, Kyrpides NC, Klenk HP, Göker M, Goodfellow M (2018) Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 8(1):525

    Article  PubMed  PubMed Central  Google Scholar 

  • Carro L, Veyisoglu A, Cetin D, Igual JM, Klenk H-P, Trujillo ME, Sahin N (2019) A study of three bacteria isolated from marine sediment and description of Micromonospora globispora sp. nov. Syst Appl Microbiol 42:190–197

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

    Article  CAS  PubMed  Google Scholar 

  • Collins MD (1985) Isoprenoid quinone analysis in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287

    Google Scholar 

  • Collins CH, Lyne PM, Grange JM, Falkinham JO (2004) Microbiological methods, 8th edn. Arnold, London

    Google Scholar 

  • Cross T, Williams ST, Sharpe ME, Holt JG (1989) The actinomycetes II: growth and examination of actinomycetes-some guidelines. Bergey’s Man Syst Bacteriol 4:2340–2343

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogeny: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    Article  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Ann Rev Microbiol 37:189–216

    Article  CAS  Google Scholar 

  • Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33:523–531

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Gontag E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  PubMed  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kawamoto I (1989) Genus Micromonospora. Bergey’s Man Syst Bacteriol 4:2442–2450

    Google Scholar 

  • Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in the ocean sediments. Appl Environ Microb 68:5005–5011

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nash P, Krent MM (1991) Culture media. In: Balows A, Hauser WJ, Herrmann KL, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology, 3rd edn. American Society for Microbiology, Washington, pp 1268–1270

    Google Scholar 

  • Ørskov J (1923) Investigations into the morphology of the ray fungi. Levin and Munksgaard, Copenhagen

    Google Scholar 

  • Phongsopitanun W, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P, Suwanborirux K, Tanasupawat S (2015) Micromonospora fluostatini sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 65(12):4417–4423

    Article  CAS  PubMed  Google Scholar 

  • Rusnak K, Troyanovich J, Mierzwa R, Chu M, Patel M, Weistein M (2001) An antibiotic with activity against gram-positive bacteria from the gentamicin-producing strain of Micromonospora purpurea. Appl Microbiol Biotechnol 56:502–503

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method. A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. MIDI Inc, Newark, DE

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan GYA, Ward AC, Goodfellow M (2006) Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol 29:557–569

    Article  CAS  PubMed  Google Scholar 

  • Veyisoglu A, Carro L, Cetin D, Guven K, Spröer C, Pötter G, Klenk H-P, Sahin N, Goodfellow M (2016a) Micromonospora profundi sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 66:4735–4743

    Article  CAS  PubMed  Google Scholar 

  • Veyisoglu A, Carro L, Guven K, Cetin D, Sproer C, Schumann P, Klenk H-P, Goodfellow M, Sahin N (2016b) Micromonospora yasonensis sp. nov., isolated from a Black Sea sediment. Antonie Van Leeuwenhoek 109:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approachesto bacterial systematics. Int J Syst Evol Microbiol 37:463–464

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AV is gratefully acknowledge support from Ondokuz Mayis University (Project No. PYO. FEN. 1901.12.014) and the School of Biology (Newcastle University). LC thanks the University of Salamanca for a postdoctoral fellowship. Genome sequencing was provided by MicrobesNG (http://www.microbesng.uk), which is supported by the BBSRC (Grant Number BB/L024209).

Author information

Authors and Affiliations

Authors

Contributions

AV, NS and HPK designed the study. AV isolated the strain and carried out phenotypic characterisation and single gene phylogenies. LC carried out chemotaxonomic analysis and genome sequencing and analysing. DC carried out scanning electron microscopy analysis and JMI carried out fatty acids determination. AV and LC wrote the manuscript. All authors have revised the manuscript.

Corresponding authors

Correspondence to Aysel Veyisoglu or Nevzat Sahin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veyisoglu, A., Carro, L., Cetin, D. et al. Micromonospora orduensis sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek 113, 397–405 (2020). https://doi.org/10.1007/s10482-019-01349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01349-6

Keywords

Navigation