Skip to main content

Advertisement

Log in

Virulence potential of Corynebacterium striatum towards Caenorhabditis elegans

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Corynebacterium striatum strains have been increasingly reported as etiological agents of nosocomial infections and outbreaks in industrialized and developing countries. However, there are few studies focused on the virulence potential of C. striatum. A growing body of research supports the use of Caenorhabditis elegans as a model host for investigating the virulence potential of pathogenic bacteria, including corynebacteria. In the present study, chemotaxis behaviour, mortality, and morphological changes were investigated in nematodes infected by four C. striatum strains isolated from different clinical sites, and with different MDR profiles and PFGE types. The results showed chemotaxis of nematodes towards C. striatum. Nematode death (> 60%) was detected from the first day post-infection with all strains tested, but at different levels, independent of biofilm formation on catheter surfaces and differences in growth temperature between nematodes (20 °C) and mammals (37 °C). C. striatum 2369/II multidrug-resistant (MDR; from tracheal aspirate of a patient undergoing endotracheal intubation) and 1961/III multidrug-sensitive (MDS; urine) strains led to 100% mortality in worms. Survival of nematodes was observed until 4 days post-infection with the C. striatum 1954/IV MDS strain isolated from a surgical wound (13%) and 1987/I MDR strain isolated from a patient with a lower respiratory tract infection (39%). The Dar phenotype was observed post-infection with all MDS and MDR strains except 1954/IV. All strains showed the capacity for bagging formation. Star formation was observed only with strains that led to 100% nematode mortality. In conclusion, C. striatum was found to exert virulence for C. elegans. Variations in nematode morphological changes and levels of mortality indicate differences in the virulence potential of C. striatum independent of clinical isolation site, capacity for biofilm formation, and MDR and PFGE profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aballay A, Yorgey P, Ausubel FM (2000) Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol 10:1539–1542

    Article  CAS  PubMed  Google Scholar 

  • Antunes CA, Sanches LS, Hacker E, Köhler S, Bösl K et al (2015) Characterization of DIP0733, a multi-functional virulence factor of Corynebacterium diphtheriae. Microbiology 161:639–647

    Article  CAS  PubMed  Google Scholar 

  • Antunes CA, Clark L, Marie-There’s W, et al. (2016) Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria. Microbiol Res 162:84–93

    CAS  Google Scholar 

  • Baio PV, Mota HF, Freitas AD, Gomes DL, Ramos JN et al (2013) Clonal multidrug-resistant Corynebacterium striatum within a nosocomial environment. Mem Inst Oswaldo Cruz 108(1):23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begun J, Gaiani JM, Rohde H, Mack D, Calderwood SB et al (2007) Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog 3(4):57

    Article  CAS  Google Scholar 

  • Bialek S, Lavigne J, Chevalier J, Marcon E, Leflon V et al (2010) Membrane efflux and influx modulate both multidrug resistance and virulence of Klebsiella pneumoniae in a Caenorhabditis elegans model. Ant Agents Chemother 54:4373–4378

    Article  CAS  Google Scholar 

  • Campanile F, Carretto E, Barbarini D, Grigis A, Falcone M et al (2009) Clonal multidrug-resistant Corynebacterium striatum strains. Emerg Infect Dis 15(1):75–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceri H, Oslan D, Mork D, Storey R, Read A et al. (2001) The MBEC assay system: multiple equivalent biofilms for antibiotic and biocid susceptibility tenting. Grow Biof 337: 337–385.

    Google Scholar 

  • Creagh RJM, Saavedra FJ, Rodríguez P, Rodríguez MD (2000) Pneumonia caused by Corynebacterium striatum in a patient with AIDS. Enferm Infecc Microbiol Clin 18:297–298

    CAS  PubMed  Google Scholar 

  • Donato V, Ayala FR, Cogliati S, Bauman C, Costa JG (2017) Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nat Commun 8:14332

    Google Scholar 

  • Fernández-Ayala M, Nan DN, Fariñas MC (2001) Vertebral osteomyelitis due to Corynebacterium striatum. Am J Med. 111:167

    Article  PubMed  Google Scholar 

  • Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV et al (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci 98:10892–10897

    Article  CAS  PubMed  Google Scholar 

  • Hashizume et al (2016) Native valve endocarditis due to Corynebacterium striatum confirmed by 16S ribosomal RNA sequencing. Infect Chemother 48(3):239–245

    Article  Google Scholar 

  • Hinnebusch BJ, Perry RD, Schwan TG (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273:367–370

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin J, Félix MA, Clark LC, Stroud D, Gravato-Nobre MJ (2013) Two Leucobacter strains exert complementary virulence on Caenorhabditis including death by worm-star formation. Curr Biol 23:2157–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshua GW, Karlyshev AV, Smith MP, Isherwood KE, Titball RW, Wren BW (2003) A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149:3221–3229

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Takafumi M, Mina T, Haru K (2018) Interactive 26 A life-threatening infection due to Corynebacterium striatum a lesson learned. Eur Assoc Cardio Thorac Surg 26:709–710.

    Google Scholar 

  • Mattos-Guaraldi AL, Guimarães LC, Santos CS, Veras AAO et al (2015) Draft genome sequence of Corynebacterium striatum 1961 BR-RJ/09 a multidrug-susceptible strain isolated from the urine of a hospitalized 37-year-old female patient. Genome Announc 3:00869–915

    Article  Google Scholar 

  • Mosser T, Matic I, Leroy M (2011) Bacterium-induced internal egg hatching frequency is predictive of life span in Caenorhabditis elegans populations. Appl Environ Microbiol 77:8189–8192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva A, Belvisi V, Iannetta M, Andreoni C, Mascellino MT et al (2010) Pacemaker lead endocarditis due to multidrug-resistant Corynebacterium striatum detected with sonication of the device. J Clin Microbiol 48:4669–4671

    Article  Google Scholar 

  • Revell PA, Miller VL (2001) Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 205:159–164

    Article  CAS  PubMed  Google Scholar 

  • Sifri CD, Begun J, Ausubel FM, Calderwood SB (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71:2208–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza C, Faria YV, Sant'Anna LO et al (2015) Biofilm production by multiresistant Corynebacterium striatum associated with nosocomial outbreak. Mem Inst Oswaldo Cruz 110:242–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LY, Gao B, Zhang F, Sun XL et al (2013) A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk. Talanta 106:360–366

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Chen Y, Potvin E, Sanschagrin F, Levesque RC et al (2005) Comparative signature-tagged mutagenesis identifies Pseudomonas factors conferring resistance to the pulmonary collectin SP-A. Plos Pathogy 1:259–268

    CAS  Google Scholar 

Download references

Acknowledgements

In memory: Doctor Raphael Hirata Júnior

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Sub-Reitoria de Pós-graduação e Pesquisa da Universidade do Estado do Rio de Janeiro (SR-2/UERJ).

Author information

Authors and Affiliations

Authors

Contributions

Study conception or design: CS, LSL, ALMG. General orientation of the study: ALMG. Conductance of research: CS, LSL, HFM, YFV, FCO, SCS, MEFCC, AESC. Data analysis: CS, LOM, ALMG. Contribution of new methods or models: MGL, CSS. Writing of the paper: CS, LSL, ALMG.

Corresponding author

Correspondence to Ana Luíza Mattos-Guaraldi.

Ethics declarations

Conflict of interest

The authors declare that they do not have a conflict of interest.

Ethical approval

This study was approved by the Research Ethics Committee of the Hospital University Pedro Hernesto of Rio de Janeiro City (no. CEUA CONCEA-029/2015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, C., Simpson-Louredo, L., Mota, H.F. et al. Virulence potential of Corynebacterium striatum towards Caenorhabditis elegans. Antonie van Leeuwenhoek 112, 1331–1340 (2019). https://doi.org/10.1007/s10482-019-01265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01265-9

Keywords

Navigation