Skip to main content
Log in

Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Candida albicans is the major fungus that colonises medical implants, causing device-associated infections with high mortality. Antagonistic bacterial products with interesting biological properties, such as biosurfactants, have recently been considered for biofilm prevention. This study investigated the activity of lipopeptide biosurfactant produced by Bacillus subtilis AC7 (AC7 BS) against adhesion and biofilm formation of C. albicans on medical-grade silicone elastomeric disks (SEDs). Chemical analysis, stability, surface activities of AC7 BS crude extract and physicochemical characterisation of the coated silicone disk surfaces were also carried out. AC7 BS showed a good reduction of water surface tension, low critical micelle concentration, good emulsification activity, thermal resistance and pH stability. Co-incubation with 2 mg ml−1 AC7 BS significantly reduced adhesion and biofilm formation of three C. albicans strains on SEDs in a range of 67–69 % and of 56–57 %, respectively. On pre-coated SEDs, fungal adhesion and biofilm formation were reduced by 57–62 % and 46–47 %, respectively. Additionally, AC7 BS did not inhibit viability of C. albicans strains in both planktonic and sessile form. Chemical analysis of the crude extract revealed the presence of two families of lipopeptides, principally surfactin and a lower percentage of fengycin. The evaluation of surface wettability indicated that AC7 BS coating of SEDs surface was successful although uneven. AC7 BS significantly prohibits the initial deposition of C. albicans and slows biofilm growth, suggesting a potential role of biosurfactant coatings for preventing fungal infection associated with silicone medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almirante B, Rodrıguez D, Park BJ et al (2005) Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2002 to 2003. J Clin Microbiol 43:1829–1835

    Article  PubMed  PubMed Central  Google Scholar 

  • Amani H, Sarrafzadeh MH, Haghighi M, Mehrnia MR (2010) Comparative study of biosurfactant producing bacteria in MEOR applications. J Pet Sci Eng 75:209–214

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. doi:10.1007/s00253-010-2589-0

    Article  CAS  PubMed  Google Scholar 

  • Biniarz P, Baranowska G, Feder-Kubis J, Krasowska A (2015) The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Antonie Van Leeuwenhoek 108:343–353. doi:10.1007/s10482-015-0486-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busscher HJ, van Hoogmoed CG, Geertsema-Doornbusch GI, van der Kuijl-Booij M, van der Mei HC (1997) Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Appl Environ Microbiol 63:3810–3817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  PubMed  Google Scholar 

  • Ceresa C, Tessarolo F, Caola I (2015) Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol 118:1116–1125. doi:10.1111/jam.12760

    Article  CAS  PubMed  Google Scholar 

  • Chandra J, Mukherjee PK, Ghannoum MA (2008) In vitro growth and analysis of Candida biofilms. Nat Protoc 3:1909–1924. doi:10.1038/nprot.2008.192

    Article  CAS  PubMed  Google Scholar 

  • Cochis A, Fracchia L, Martinotti MG, Rimondini L (2012) Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol 113:755–761. doi:10.1016/j.oooo.2011.11.004

    Article  PubMed  Google Scholar 

  • Comoglio F, Fracchia L, Rinaldi M (2013) Bayesian inference from count data using discrete uniform priors. PLoS One. doi:10.1371/journal.pone.0074388

    PubMed  PubMed Central  Google Scholar 

  • Crump JA, Collignon PJ (2000) Intravascular Catheter-Associated Infections. Eur J Clin Microbiol Infect Dis 19:1–8

    Article  CAS  PubMed  Google Scholar 

  • de Sainte CP (2009) Degradation of PEO in the solid state: a theoretical kinetic model. Macromolecules 42:3469–3482

    Article  Google Scholar 

  • Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475

    Article  CAS  PubMed  Google Scholar 

  • Espinel-Ingroff A, Canton E, Martin-Mazuelos E, Pemán J (2009) Pharmacotherapy of Candida infections with echinocandins. Clin Med Insights Ther 1:889–897

    CAS  Google Scholar 

  • Falagas ME, Makris GC (2009) Probiotic bacteria and biosurfactants for nosocomial infection control: a hypothesis. J Hosp Infect 71:301–306. doi:10.1016/j.jhin.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  • Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog. doi:10.1371/journal.ppat.1002585

    Google Scholar 

  • Ferreira AM, Carmagnola I, Chiono V et al (2013) Surface modification of poly(dimethylsiloxane) by two-step plasma treatment for further grafting with chitosan–Rose Bengal photosensitizer. Surf Coat Technol 223:92–97

    Article  CAS  Google Scholar 

  • Fracchia L, Cavallo M, Allegrone G, Martinotti MG (2010) A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 827–837

    Google Scholar 

  • Fracchia L, Banat JJ, Cavallo M et al (2015) Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng 2:144–162

    Article  Google Scholar 

  • Franzetti A, Gandolfi I, Raimondi C et al (2012) Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour Technol 108:245–251. doi:10.1016/j.biortech.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  • Ghojavand H, Vahabzadeh F, Roayaei E, Shahraki AK (2008) Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J Colloid Interface Sci 324:17–26. doi:10.1016/j.jcis.2008.05.001

    Article  Google Scholar 

  • Goldberg SP, Baddley JW, Aaron MF, Pappas PG, Holman WL (2000) Fungal infections in ventricular assist devices. ASAIO J 46:S37–S40

    Article  CAS  PubMed  Google Scholar 

  • Guery B, Arendrup M, Auzinger G et al (2009) Management of invasive candidiasis and candidemia in adult non-neutropenic intensive care unit patients: part I. Epidemiology and diagnosis. Intensive Care Med 35:55–62. doi:10.1007/s00134-008-1338-7

    Article  PubMed  Google Scholar 

  • Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62:915–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91–104. doi:10.1089/mdr.2009.0120

    Article  CAS  PubMed  Google Scholar 

  • Horn DL, Neofytos D, Anaissie EJ et al (2009) Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 48:1695–1703. doi:10.1086/599039

    Article  CAS  PubMed  Google Scholar 

  • Janek T, Lukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol. doi:10.1186/1471-2180-12-24

    PubMed  PubMed Central  Google Scholar 

  • Joshi S, Bharucha C, Desai A (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99:4603–4608

    Article  CAS  PubMed  Google Scholar 

  • Kanna R, Gummadi SN, Kumar GS (2014) Production and characterization of biosurfactant by Pseudomonas putida MTCC 2467. J Biol Sci 14:436–445

    Article  Google Scholar 

  • Karchmer AV (2000) Infections of prosthetic valves and intravascular devices. In: Mandell G, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases. Churchill Livingstone, Elsevier, Philadelphia, pp 903–917

    Google Scholar 

  • Kim HS, Yoon BD, Lee CH et al (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46. doi:10.1016/S0922-338X(97)82784-5

    Article  Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    CAS  PubMed  Google Scholar 

  • Kojic EM, Darouiche RO (2004) Candida infections on medical devices. Clin Microbiol Rev 17:255–267. doi:10.1128/CMR.17.2.255-267.2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Kullberg BJ, Verweij PE, Akova M et al (2011) European expert opinion on the management of invasive candidiasis in adults. Clin Microbiol Infect 17:1–12. doi:10.1111/j.1469-0691.2011.03615.x

    Article  PubMed  Google Scholar 

  • Lai CC, Wang CY, Liu WL, Huang YT, Hsueh PR (2012) Time to positivity of blood cultures of different Candida species causing fungaemia. J Med Microbiol 61:701–704. doi:10.1099/jmm.0.038166-0

    Article  PubMed  Google Scholar 

  • Lazzell AL, Chaturvedi AK, Pierce CG, Prasad D, Uppuluri P, Lopez-Ribot JL (2009) Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemother 64:567–570. doi:10.1093/jac/dkp242

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Yoo JS, Kim SH et al (2006) Production and characterization of lipopeptide biosurfactant from Bacillus subtilis A8–8. J Microbiol Biotechnol 16:716–723

    CAS  Google Scholar 

  • Maki DG, Tambyah PA (2001) Engineering out the risk for infection with urinary catheters. Emerg Infect Dis 7:342–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128. doi:10.4161/viru.22913

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341

    Article  CAS  PubMed  Google Scholar 

  • Pecci Y, Rivardo F, Martinotti MG, Allegrone GJ (2010) LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. Mass Spectrom 45:772–778. doi:10.1002/jms.1767

    Article  CAS  Google Scholar 

  • Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rautela R, Singh AK, Shukla A, Cameotra SS (2014) Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie Van Leeuwenhoek 105:809–821

    Article  CAS  PubMed  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553. doi:10.1007/s00253-009-1987-7

    Article  CAS  PubMed  Google Scholar 

  • Rivardo F, Martinotti MG, Turner RJ, Ceri H (2011) Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. Int J Antimicrob Aging 37:324–331. doi:10.1016/j.ijantimicag.2010.12.011

    Article  CAS  Google Scholar 

  • Rodrigues LR, Teixeira JA (2010) Biomedical and therapeutic applications of biosurfactants. Adv Exp Med Biol 672:75–87

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006a) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LR, Banat IM, van der Mei HC, Teixeira JA, Oliveira R (2006b) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100:470–480

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Tudela JL, Arendrup MC, Barchiesi F et al (2008) EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect 14:398–405

    Article  CAS  Google Scholar 

  • Ruhnke M, Rickerts V, Cornely OA et al (2011) Diagnosis and therapy of Candida infections: joint recommendations of the German speaking mycological society and the paul-ehrlich-society for chemotherapy. Mycoses 54:279–310. doi:10.1111/j.1439-0507.2011.02040.x

    Article  CAS  PubMed  Google Scholar 

  • Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133

    Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  CAS  PubMed  Google Scholar 

  • Thompson DS, Carlisle PL, Kadosh D (2011) Coevolution of morphology and virulence in Candida species. Eukaryot Cell 10:1173–1182. doi:10.1128/EC.05085-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Veerdonk FL, Netea MG, Joosten LA, van der Meer JWM, Kullberg BJ (2010) Novel strategies for the prevention and treatment of Candida infections: the potential of immunotherapy. FEMS Microbiol Rev 34:1063–1075. doi:10.1111/j.1574-6976.2010.00232.x

    Article  PubMed  Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Regione Piemonte Grant POR-FESR Asse I—AGROBIOCAT Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letizia Fracchia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceresa, C., Rinaldi, M., Chiono, V. et al. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek 109, 1375–1388 (2016). https://doi.org/10.1007/s10482-016-0736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0736-z

Keywords

Navigation