Skip to main content
Log in

16S-gyrB-rpoB multilocus sequence analysis for species identification in the genus Microbispora

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The genus Microbispora has been considered difficult to define taxonomically. While 16S rRNA gene analysis is required to determine phylogenetic relationships among species in this genus, most 16S rRNA gene-based phylogenetic tree topologies are not reliable. The genus Microbispora currently contains eight species along with six reclassified species (Microbispora chromogenes, Microbispora diastatica, Microbispora parva, Microbispora indica, Microbispora karnatakensis, Microbispora rosea) and Microbispora rosea subsp. aerata, a taxon composed of three further reclassified species (Microbispora aerata, Microbispora thermodiastatica, and Microbispora thermorosea). 16S rRNA, 23S rRNA, gyrB, and rpoB gene sequences were obtained for the type strains of Microbispora species, and eleven endophytic isolates from a Brazilian medicinal plant, Vochysia divergens. Using the concatenated sequence, most Microbispora type strains could be distinguished with high probability support. Based on these analyses, we propose that five of the species reclassified within the subspecies of M. rosea (M. chromogenes, M. karnatakensis, M. parva, M. aerata and M. thermorosea) are distinct from M. rosea and so should be retained as distinct species. The concatenated 16S-gyrB-rpoB gene phylogenic tree had significant probability support and topology. We propose the use of concatenated 16S-gyrB-rpoB gene sequences to determine phylogenetic relationships within the genus Microbispora. We also suggest that strains sharing >98.1 % 16S-gyrB-rpoB gene sequences similarity be defined as a single species, based on results from this analysis. Seven of the strains isolated from V. divergens were not related to any previously described Microbispora species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bazinet AL, Zwickl DJ, Cummings MP (2014) A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Syst Biol 63:812–818

    Article  PubMed  PubMed Central  Google Scholar 

  • Boondaeng A, Ishida Y, Tamura T, Tokuyama S, Kitpreechavanich V (2009) Microbispora siamensis sp. nov., a thermotolerant actinomycete isolated from soil. Int J Syst Evol Microbiol 59:3136–3139

    Article  CAS  PubMed  Google Scholar 

  • Busarakam K, Bull AT, Girard GV, Labeda DP, Wezel GPV, Goodfellow M (2014) Streptomyces leeuwenhoekii sp. nov., the producerof chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie Van Leeuwenhoek 105:849–861

    Article  CAS  PubMed  Google Scholar 

  • Carro L, Sproerb C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    Article  PubMed  Google Scholar 

  • Chen X, Song YG, Xu HY, Menghe BL, Zhang HP, Xun ZH (2015) Genetic relationship amongst Enterococcus faecalis isolates from different sources as revealed by multilocus sequence typing. J Dairy Sci 98:5183–5193

    Article  CAS  PubMed  Google Scholar 

  • Curtis SM, Meyers PR (2012) Multilocus sequence analysis of the actinobacterial genus Kribbella. Syst Appl Microbiol 35:441–446

    Article  CAS  PubMed  Google Scholar 

  • Dalmasso M, Nicolas P, Falentin H, Valence F, Tanskanen J, Jatila H, Salusjarvi T, Thierry A (2011) Multilocus sequence typing of Propionibacterium freudenreichii. Int J Food Microbiol 145:113–120

    Article  CAS  PubMed  Google Scholar 

  • Devulder G, Pérouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293–302

    Article  CAS  PubMed  Google Scholar 

  • Duangmal K, Mingma R, Patham-aree W, Niyomvong N, Inahashi Y, Matsumoto A, Thamchaipenet A, Takahashi Y (2012) Microbispora thailandensis sp. nov., an actinomycete isolated from cave soil. J Antibiot 65:491–494

    Article  CAS  PubMed  Google Scholar 

  • Gerber NN, Lechevalier MP (1964) Phenazines and phenoxazinones from Waksmania aerata sp. nov. and Pseudomonas iodina. Biochemistry 3:598–602

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pulses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BJ, Kim CJ, Chun J, Koh YH, Lee SH, Hyun JW, Cha CY, Kook YH (2004) Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase β-subunit gene (rpoB) sequences. Int J Syst Evol Microbiol 54:593–598

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kuhner MK, Felsenstein J (1994) Simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 11:459–468

    CAS  PubMed  Google Scholar 

  • Labeda DP, Doroghazi JR, Ju KS, Metcalf WW (2014) Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov. Int J Syst Evol Microbiol 64:894–900

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang Y, Liu C, Wang H, Zhao J, Li L, Zhang Z, Wang X, Xiang W, Librado P, Rozas J (2015) Microbispora bryophytorum sp. nov., an actinomycete isolated from moss (Bryophyta). Int J Syst Evol Microbiol 65:1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Miyadoh S, Amano S, Tohyama H, Shomura T (1990) A taxonomic review of the genus Microbispora and a proposal to transfer two species to the genus Actinomadura and to combine ten species into Microbispora rosea. J Gen Microbiol 136:1905–1913

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T (1999) Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 49:1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Nonomura H, Ohara Y (1960) Distribution of the actinomycetes in soil. IV. The isolation and classification of the genus Microbispora. J Ferment Technol 38:401–405

    Google Scholar 

  • Nonomura H, Ohara Y (1969) Distribution of actinomycetes in soil. VII. A culture method effective for both preferential isolation and enumeration of Microbispora and Streptosporangium strains in soil. (Part 2). Classification of the isolates. J Ferment Technol 47:701–709

    Google Scholar 

  • Nonomura H, Ohara Y (1971) Distribution of actinomycetes in soil. X. New genus and species of monosporic actinomycetes. J Ferment Technol 49:895–903

    Google Scholar 

  • Paradis E (2010) Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Penny D, Hendy MD (1985) The use of tree comparison metrics. Syst Zool 34:75–82

    Article  Google Scholar 

  • Pérez-Yépez J, Armas-Capote N, Velázquez E, Pérez-Galdona R, Rivas R, Léon-Barrios M (2014) Evaluation of seven housekeeping genes for multilocus sequence analysis of the genus Mesorhizobium: resolving the taxonomic affiliation of the Cicer canariense rhizobia. Syst Appl Microbiol 37:553–559

    Article  PubMed  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical. Computing, Vienna. http://www.R-project.org/

  • Rao VA, Prabhu KK, Sridhar BP, Venkateswarlu A, Actor P (1987) Two new species of Microbispora from Indian soils: Microbispora karnatakensis sp. nov. and Microbispora indica sp. nov. Int J Syst Bacteriol 37:181–185

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press

  • Savi DC, Shaaban KA, Vargas N, Ponomareva LV, Possiede YM, Thorson JS, Glienke C, Rohr J (2015a) Microbispora sp. LGMB259 endophytic actinomycetes isolated from Vochysia divergens (Pantanal/Brazil) producing β-carbolines and indoles with biological activity. Curr Microbiol 70:345–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savi DC, Haminiuk CWI, Sora GTS, Adamoski DM, Kenski J, Winnischofer SMB, Glienke C (2015b) Antitumor, antioxidant and antibacterial activities of secondary metabolites extracted by endophytic actinomycetes isolated from Vochysia divergens. Int J Pharm Chem Biol Sci 5:347–356

    Google Scholar 

  • Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Tambong JT, Xu R, Kaneza C, Nshogozabahizi JC (2014) An in-depth analysis of a multilocus phylogeny identifies leus as a reliable phylogenetic marker for the genus Pantoea. Evol Bioinform 10:115–125

    Article  CAS  Google Scholar 

  • Tamura T, Hatano k (2001) Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 51:2119–2125

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Matsuzana T, Oji S, Ichikawa N, Hosoyama A, Katsumata H, Yamazoe A, Hamada M, Suzuki KI, Gonoi T, Fujita NA (2012) A genome sequence-based approach to taxonomy of the genus Nocardia. Antonie Van Leeuwenhoek 102:481–491

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Ruan J (1996) A proposal to transfer Microbispora bispora (Lechevalier 1965) to a new genus, Themobispora gen. nov., as Thermobispora bispora comb. nov. Int J Syst Bacteriol 46:933–938

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) International Committee on Systematic Bacteriology: report of the ad hoc committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Xu XX, Wang HL, Lin HP, Wang C, Qu Z, Xie QY, Ruan JS, Hong K, Wang Y, Zhang Z, Ruan J (2012) Microbispora hainanensis sp. nov., isolated from rhizosphere soil of Excoecaria agallocha in a mangrove. Int J Syst Evol Microbiol 62:2430–2434

    Article  CAS  PubMed  Google Scholar 

  • Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the Actinomycete Thermomonospora chromogena and evidence for horizontal transfer of entire rRNA operon. J Bacteriol 181:5201–5209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang Y, Ruan J (1998) Reclassification of Thermomonospora and Microbispora. Int J Syst Bacteriol 48:411–422

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Glienke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savi, D.C., Aluizio, R., Galli-Terasawa, L. et al. 16S-gyrB-rpoB multilocus sequence analysis for species identification in the genus Microbispora . Antonie van Leeuwenhoek 109, 801–815 (2016). https://doi.org/10.1007/s10482-016-0680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0680-y

Keywords

Navigation