Skip to main content
Log in

Geodermatophilus aquaeductus sp. nov., isolated from the ruins of Hadrian’s aqueduct

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

An orange-black, Gram-positive, aerobic and gamma-ray resistant actinobacterium was isolated from the ruins of a Roman aqueduct located in Northern Tunisia. The optimal growth for the strain was found to be at 25–35 °C and at pH 6.0–9.5. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The peptidoglycan was found to contain meso-diaminopimelic acid as diagnostic diaminoacid. The main polar lipids were identified as phosphatidylcholine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, an unidentified glycolipid and an unidentified aminophospholipid; MK-9(H4) was found to be the dominant menaquinone and galactose was detected as the diagnostic sugar, with glucose, ribose and mannose also present. The major cellular fatty acids were identified as branched-chain saturated acids iso-C16:0, iso-C15:0 and iso-H-C16:0. The 16S rRNA gene showed 95.4–99.6 % sequence identity with the type strains of the genus Geodermatophilus. DNA–DNA relatedness values with closely related species were 39.9 ± 4.9, 33.9 ± 1.9, 27.0 ± 2.5 and 13.2 ± 1.35 % with Geodermatophilus amargosae, G. normandii, G. saharensis and G. tzadiensis respectively. Based on phenotypic results and 16S rRNA gene sequence analysis, strain BMG801T (=DSM 46834T = CECT 8822T) is proposed to represent the type strain of a novel species, Geodermatophilus aquaeductus sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahrens R, Moll G (1970) Ein neues knospendes Bakterium aus der Ostsee. Arch Mikrobiol 70:243–265

    Article  CAS  PubMed  Google Scholar 

  • Battista JR, Earl AM, Park M-J (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365

    Article  CAS  PubMed  Google Scholar 

  • Bertazzo M, Montero-Calasanz MC, Martinez-Garcia M et al (2014) Geodermatophilus brasiliensis sp. nov., isolated from Brazilian soil. Int J Syst Evol Microbiol 64:2841–2848

  • Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  CAS  PubMed  Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245

    Article  CAS  PubMed  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Essoussi I, Ghodhbane-Gtari F, Amairi H et al (2010) Esterase as an enzymatic signature of Geodermatophilaceae adaptability to Sahara desert stones and monuments. J Appl Microbiol 108:1723–1732

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Gordon RE, Smith MM (1955) Proposed group of characters for the separation of Streptomyces and Nocardia. J Bacteriol 69:147–150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  • Gtari M, Essoussi I, Maaoui R et al (2012) Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 80:566–577

    Article  CAS  PubMed  Google Scholar 

  • Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192. doi:10.1016/S0723-2020(83)80048-4

    Article  CAS  PubMed  Google Scholar 

  • Ivanova N, Sikorski J, Jando M et al (2010) Complete genome sequence of Geodermatophilus obscurus type strain (G-20T). Stand Genomic Sci 2(2):158

  • Jaouani A, Neifar M, Hamza A et al (2012) Purification and characterization of a highly thermostable esterase from the actinobacterium Geodermatophilus obscurus strain G20. J Basic Microbiol 52:653–660

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Lee H-G, Kim H-S et al (2013) Geodermatophilus soli sp. nov. and Geodermatophilus terrae sp. nov., two actinobacteria isolated from grass soil. Int J Syst Evol Microbiol 63:2625–2629

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Luedemann GM (1968) Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). J Bacteriol 96:1848–1858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

  • Mevs U, Stackebrandt E, Schumann P et al (2000) Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 50(1):337–346

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Montero-Calasanz MC, Göker M, Pötter G et al (2012) Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad. Extremophiles 16:903–909

    Article  CAS  PubMed  Google Scholar 

  • Montero-Calasanz MC, Göker M, Rohde M et al (2013a) Geodermatophilus siccatus sp. nov., isolated from arid sand of the Saharan desert in Chad. Antonie Van Leeuwenhoek 103:449–456

    Article  Google Scholar 

  • Montero-Calasanz MC, Göker M, Broughton WJ et al (2013b) Geodermatophilus tzadiensis sp. nov., a UV radiation-resistant bacterium isolated from sand of the Saharan desert. Syst Appl Microbiol 36:177–182

  • Montero-Calasanz MC, Göker M, Pötter G et al (2013c) Geodermatophilus normandii sp. nov., isolated from Saharan desert sand. Int J Syst Evol Microbiol 63:3437–3443

  • Montero-Calasanz MC, Göker M, Pötter G et al (2013d) Geodermatophilus saharensis sp. nov., isolated from sand of the Saharan desert in Chad. Arch Microbiol 195:153–159

  • Montero-Calasanz MC, Göker M, Pötter G et al (2013e) Geodermatophilus africanus sp. nov., a halotolerant actinomycete isolated from Saharan desert sand. Antonie Van Leeuwenhoek 104:207–216

  • Montero-Calasanz MC, Göker M, Pötter G et al (2013f) Geodermatophilus telluris sp. nov., an actinomycete isolated from Saharan desert sand. Int J Syst Evol Microbiol 63:2254–2259

  • Montero-Calasanz MC, Göker M, Rohde M et al (2014a) Description of Geodermatophilus amargosae sp. nov., to accommodate the not validly named Geodermatophilus obscurus subsp. amargosae (Luedemann, 1968). Curr Microbiol 68:365–371

  • Montero-Calasanz MC, Hofner B, Göker M et al (2014b) Geodermatophilus poikilotrophi sp. nov.: a multitolerant actinomycete isolated from dolomitic marble. Biomed Res Int 2014:914767

    Article  PubMed Central  Google Scholar 

  • Nie G-X, Ming H, Li S et al (2012) Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie Van Leeuwenhoek 101:811–817

  • Normand P (2006) Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 56:2277–2278

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Benson D (2012) The Actinobacteria. Bergey’s Manual of Systematic Bacteriology, vol 5, 2nd edn. Springer Science & Business Media, Dordrecht, pp 528–530

    Google Scholar 

  • Normand P, Daffonchio D, Gtari M (2014) The family Geodermatophilaceae. In: The Prokaryotes. Springer, Berlin, Heidelberg, pp 361–379

  • Qu J-H, Hui M, Qu J-Y et al (2013) Geodermatophilus taihuensis sp. nov., isolated from the interfacial sediment of a eutrophic lake. Int J Syst Evol Microbiol 63:4108–4112

  • Rainey FA, Ray K, Ferreira M et al (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sen A, Daubin V, Abrouk D et al (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders “Frankiales” and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. an. Int J Syst Evol Microbiol 64:3821–3832

    Article  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Method for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  • Vaas LAI, Sikorski J, Michael V et al (2012) Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE 7:e34846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaas LAI, Sikorski J, Hofner B et al (2013) opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 29:1823–1824

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1988) International committee on systematic bacteriology announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. J Appl Bacteriol 64:283–284

    Article  Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by The Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Tunisia (LR03ES03). Chemotaxonomic work was done at the DSMZ (German Collection of Microorganisms and Cell Cultures) Braunschweig.

Conflict of interest

Authors disclose that there are no conflicts of interest. No research involving human participants and/or animals was performed. No non-financial interests tied directly or indirectly to this research exist that may be important to readers to be disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Gtari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2015_461_MOESM1_ESM.ppt

Supplementary Fig. S1. The parameter “Maximum Height” estimated from the respiration curves as measured with the OmniLog phenotyping device and discretized and visualized as heatmap using the opm package. Plates and substrates are rearranged according to their overall similarity (as depicted using the row and column dendrograms). Ochre colour indicates positive reaction; purple colour indicates negative reaction; white colour indicates ambiguous reaction. Letters (A/B) indicate each replicate of experiment. Supplementary material 1 (PPT 160 kb)

10482_2015_461_MOESM2_ESM.ppt

Supplementary Fig. S2. Polar lipids profile of strain BMG801T resolved by two-dimensional TLC and revealed by spraying plate with molydatophosphoric acid. DPG diphosphadidylglycerol, PE phosphatidethanolamine, PC phosphatidylcholine, PI phosphatidylinositol, GL unidentified glycolipid, APL unidentified aminophospholipid. Supplementary material 2 (PPT 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hezbri, K., Ghodhbane-Gtari, F., del Carmen Montero-Calasanz, M. et al. Geodermatophilus aquaeductus sp. nov., isolated from the ruins of Hadrian’s aqueduct. Antonie van Leeuwenhoek 108, 41–50 (2015). https://doi.org/10.1007/s10482-015-0461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0461-z

Keywords

Navigation