Skip to main content
Log in

Tropicihabitans flavus gen. nov., sp. nov., a new member of the family Cellulomonadaceae

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

An Erratum to this article was published on 14 May 2015

Abstract

Two novel Gram-stain positive actinobacteria, designated PS-14-16T and RS-7-1, were isolated from the rhizosphere of a mangrove and sea sediment, respectively, and their taxonomic positions were investigated by a polyphasic approach. Both strains were observed to form vegetative hyphae in the early phase of growth but the hyphae eventually fragment into short rods to coccoid cells. The peptidoglycan type of both strains was found to be A4α. Their predominant menaquinone was identified as MK-9(H4) and the major fatty acid as anteiso-C15:0. The DNA G+C content was determined to be 68.4–68.5 mol%. 16S rRNA gene sequencing revealed that strains PS-14-16T and RS-7-1 were related to members of the family Cellulomonadaceae. Their nearest phylogenetic neighbour was found to be Sediminihabitans luteus, which is currently the only species of the genus Sediminihabitans, with a similarity of 97.94 %. However, strains PS-14-16T and RS-7-1 were distinguishable from the members of the genus Sediminihabitans and the other genera within the family Cellulomonadaceae in terms of chemotaxonomic characteristics and phylogenetic relationship. The results of DNA–DNA hybridization experiments indicated that strains PS-14-16T and RS-7-1 belong to the same species. Strains PS-14-16T and RS-7-1 are concluded to represent a novel genus and species of the family Cellulomonadaceae, for which the name Tropicihabitans flavus gen. nov., sp. nov. is proposed. The type strain of T. flavus is PS-14-16T (=NBRC 110109T = IanCC A 516T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology, 1st edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    Article  CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:738–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Hamada M, Iino T, Iwami T, Harayama S, Tamura T, Suzuki K et al (2010) Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., two new members of the family Dermatophilaceae, and reclassification of Dermatophilus chelonae (Masters, 1995) as Austwickia chelonae gen. nov., comb. nov. J Gen Appl Microbiol 56:427–436

    Article  CAS  PubMed  Google Scholar 

  • Hamada M, Tamura T, Shibata C, Yamamura H, Hayakawa M, Suzuki K (2012a) Sediminihabitans luteus gen. nov., sp. nov., a new member of the family Cellulomonadaceae isolated from sea sediment. Antonie Van Leeuwenhoek 102:325–333

    Article  CAS  PubMed  Google Scholar 

  • Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K, Hayakawa M (2012b) Luteimicrobium album sp. nov., a novel actinobacterium isolated from lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot 65:427–431

    Article  CAS  PubMed  Google Scholar 

  • Hamada M, Shibata C, Tamura T, Suzuki K (2013a) Zhihengliuella flava sp. nov., an actinobacterium isolated from sea sediment, and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 63:4760–4764

    Article  CAS  PubMed  Google Scholar 

  • Hamada M, Tamura T, Shibata C, Yamamura H, Hayakawa M, Schumann P, Suzuki K (2013b) Paraoerskovia sediminicola sp. nov., an actinobacterium isolated from sea sediment, and emended description of the genus Paraoerskovia. Int J Syst Evol Microbiol 63:2637–2641

    Article  CAS  PubMed  Google Scholar 

  • Khan ST, Harayama S, Tamura T, Ando K, Takagi M, Kazuo S (2009) Paraoerskovia marina gen. nov., sp. nov., an actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 59:2094–2098

    Article  PubMed  Google Scholar 

  • Khan ST, Komaki H, Motohashi K, Kozone I, Takagi M, Kazuo S (2011) Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environ Microbiol 13:391–403

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Krasil’nikov NA, Kalakoutskii LV, Krasil’nikov NF (1961) A new genus of Actinomycetales, Promicromonospora, gen. nov. Bull Acad Sci USSR 1:107–112

    Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nature Rev Drug Discov 12:371–387

    Article  CAS  Google Scholar 

  • Li Y, Chen F, Dong K, Wang G (2013) Actinotalea ferrariae sp. nov., isolated from an iron mine, and emended description of the genus Actinotalea. Int J Syst Evol Microbiol 63:3398–3403

    Article  CAS  PubMed  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogen without detectable ressistance. Nature 517:455–459

    Article  CAS  PubMed  Google Scholar 

  • Prauser H, Lechevalier MP, Lechevalier HA (1970) Description of Oerskovia gen. n. to harbor Ørskov’s motile Nocardia. Appl Microbiol 19:534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rocourt J, Wehmeyer U, Stackebrandt E (1987) Transfer of Listeria denitrificans to a new genus, Jonesia gen. nov., as Jonesia denitrificans comb. nov. Int J Syst Bacteriol 37:266–270

    Article  Google Scholar 

  • Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schumann P (2011) Peptidoglycan structure. In: Rainey F, Oren A (eds) Taxonomy of prokaryotes, methods in microbiology, vol 38. Academic Press, London, pp 101–129

    Chapter  Google Scholar 

  • Schumann P, Kämpfer P, Busse HJ, Evtushenko LI (2009) Proposed minimal standards for describing new genera and species of the suborderer Micrococcineae. Int J Syst Evol Microbiol 59:1823–1849

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Prauser H (1991) The family Cellulomonadaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 2, 2nd edn. Springer, New York, pp 1323–1345

    Google Scholar 

  • Stackebrandt E, Schumann P (2000) Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. Int J Syst Evol Microbiol 50:1279–1285

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Schumann P (2012) Genus I. Cellulomonas. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology. The Actinobacteria, part A, vol 5, 2nd edn. Springer, New York, pp 702–710

    Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Stackebrandt E, Breymann S, Steiner U, Prauser H, Weiss N, Schumann P et al (2002) Re-evaluation of the status of the genus Oerskovia, reclassification of Promicromonospora enterophila (Jáger, 1983) as Oerskovia enterophila comb. nov. and description of Oerskovia jenensis sp. nov. and Oerskovia paurometabola sp. nov. Int J Syst Evol Microbiol 52:1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto N, Sato SI, Saito K, Hasuo T, Tadenuma M, Suzuki KI, Tamaoka J, Komagata K (1988) Rarobacter faecitabidus gen. nov., sp. nov., a yeast-lysing coryneform bacterium. Int J Syst Bacteriol 38:7–11

    Article  CAS  Google Scholar 

  • Yi H, Schumann P, Chun J et al (2007) Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara, 1985 as Actinotalea fermentans gen. nov., comb. nov. Int J Syst Evol Microbiol 57:151–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Research Partnership for Sustainable Development (SATREPS) which is a research program in collaborated with the Japan Science and Technology Agency (JST) and the Japan International Cooperation Agency (JICA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moriyuki Hamada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 955 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamada, M., Shibata, C., Nurkanto, A. et al. Tropicihabitans flavus gen. nov., sp. nov., a new member of the family Cellulomonadaceae . Antonie van Leeuwenhoek 107, 1299–1306 (2015). https://doi.org/10.1007/s10482-015-0424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0424-4

Keywords

Navigation