Skip to main content
Log in

Leaf-cutting ants: an unexpected microenvironment holding human opportunistic black fungi

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Fungus-growing ants of the genus Atta are known for their leaf-cutting habit, a lifestyle they have maintained since their 50-million-year-old co-evolution with a mutualistic fungus, cultivated as food. Recent studies have highlighted that, in addition to the mutualistic fungus, nests of ants harbor a great diversity of microbial communities. Such microorganisms include the dematiaceous fungi, which are characterized by their melanized cell walls. In order to contribute to the knowledge of fungal ecology, as well as opportunistic strains that may be dispersed by these social insects, we isolated and identified fungi carried by gynes of Atta capiguara and Atta laevigata, collected from colonies located in Fazenda Santana, Botucatu (São Paulo, Brazil). The isolation was carried out using the oil flotation technique, which is suitable for the growth of black fungi. Inoculated plates were incubated at 25 and 35 °C until black cultures were visible (20–45 days). Isolates were identified based on microscopic and molecular characteristics. Some isolated genera were: Cladophialophora, Cladosporium, Exophiala, Ochroconis, Phaeococcomyces, Phialophora and Penidiella. Hyaline species were also found. The results obtained from this work showed that leaf-cutting gynes may contribute to the dispersal of opportunistic dematiaceous fungi. It is suggested that more attention should be paid to this still unexplored subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Attili-Angelis D, Duarte APM, Pagnocca FC, Nagamoto NS, de Vries M, Stielow JB, de Hoog GS (2014) Novel Phialophora species from leaf-cutting ants (tribe Attini). Fungal Divers 65:65–75. doi:10.1007/s13225-013-0275-0

    Article  Google Scholar 

  • Autuori M (1941) Contribuição para o conhecimento da saúva (Atta spp.). I. Evolução do sauveiro (Atta sexdens rubropilosa Forel, 1908). Arq Inst Biol São Paulo 12:197–228

    Google Scholar 

  • Bass M, Cherrett JM (1995) Fungal hyphae as a source of nutrients for the leaf-cutting ant Atta sexdens. Physiol Entomol 20:1–6. doi:10.1111/j.1365-3032.1995.tb00793.x

    Article  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 40:D48–D53. doi:10.1093/nar/gkr1202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bueno OC, Campos-Farina AEC (1999) Formigas Urbanas: estratégias de controle. Vetores & Pragas, Brazil

  • Capriler CH, Mata S, Middelveen M (1989) Preservation of fungi in water (Castellani): 20 years. Mycopathologia 106:73–79. doi:10.1007/BF00437084

    Article  Google Scholar 

  • Colwell RK (2006) Estimate S: statistical estimation of species richness and shared species from samples. http://purl.oclc.org/estimates. Accessed 01 April 2014

  • Crous PW, Samson RA (2010) CBS Laboratory manual series: food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009a) Fungal biodiversity. CBS Laboratory manual series. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Groenewald JZ (2009b) Novel species of Mycosphaerellaceae and Teratosphaeriaceae. Persoonia 23:119–146. doi:10.3767/003158509X479531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Hoog GS, Haase G (1993) Nutritional physiology and selective isolation of Exophiala dermatitidis. Antonie Leeuwenhoek 64:17–26. doi:10.1007/BF00870917

    Article  PubMed  Google Scholar 

  • de Hoog GS, Guarro J, Gené J, Figueras MJ (2000a) Atlas of clinical fungi. Centraalbureau voor Schimmelcultures/ Universitat Rovira i Virgili, Utrecht/Reus

  • de Hoog GS, Queiroz-Telles F, Haase G, Fernandez-Zeppenfeldt G, Angelis DA, van den Ende A, Matos T, Peltroche-Llacsahuanga H, Pizzirani-Kleiner AA, Rainer J, Richard-Yegres N, Vicente V, Yegres F (2000b) Black fungi: clinical and pathogenic approaches. Med Mycol 38:243–250. doi:10.1080/mmy.38.s1.243.250

    Article  PubMed  Google Scholar 

  • de Hoog GS, Matos T, Sudhadham M, Luijsterburg KF, Haase G (2005) Intestinal prevalence of the neurotropic black yeast Exophiala (Wangiella) dermatitidis in healthy and impaired individuals. Mycoses 48:142–145. doi:10.1111/j.1439-0507.2004.01083.x

    Article  PubMed  Google Scholar 

  • de Hoog GS, Zeng JS, Harrak MJ, Sutton DA (2006) Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie Leeuwenhoek 90:257–268. doi:10.1007/s10482-006-9080-z

    Article  PubMed  Google Scholar 

  • Defossez E, Selosse M-A, Dubois MP, Mondolot L, Faccio A, Djieto-Lordon C, McKey D, Blatrix R (2009) Ant-plants and fungi: a new threeway symbiosis. New Phytol 182:942–949. doi:10.1111/j.1469-8137.2009.02793.x

    Article  PubMed  Google Scholar 

  • Forti LC, Boaretto MAC (1997) Formigas cortadeiras: Biologia, ecologia, danos e controle. Universidade Estadual Paulista, Brazil

  • Gerrits van den Ende AHG, de Hoog GS (1999) Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Stud Mycol 43:151–162

    Google Scholar 

  • Gibs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482. doi:10.1093/icb/38.3.471

    Google Scholar 

  • Guedes FLA, Attili-Angelis D, Pagnocca FC (2012) Selective isolation of dematiaceous fungi from the workers of Atta laevigata (Formicidae: Attini). Folia Microbiol 57:21–26. doi:10.1007/s12223-011-0081-6

    Article  CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278. doi:10.1016/j.pce.2003.08.056

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hoffmann CC, Danucalov IP, Purim KSM, Queiroz-Telles F (2011) Infecções causadas por fungos demácios e suas correlações anátomo-clinicas. An Bras Dermatol 86:138–141

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (2008) Super organism. The beauty, elegance and strangeness of insect societies. Norton & Company, New York

    Google Scholar 

  • Iwatsu T, Miyaji M, Okamoto S (1981) Isolation of Phialophora verrucosa and Fonsecaea pedrosoi from nature in Japan. Mycopathologia 75:149–158. doi:10.1007/BF00482809

    Article  Google Scholar 

  • Justi J Jr, Imenes SL, Bergmann EC, Campos-Farina AEC, Zorzenon FJ (1996) Formigas cortadeiras. Boletim Técnico do Instituto Biológico 4:5–31

    Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  CAS  PubMed  Google Scholar 

  • Little AE, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine-microbe symbiosis. Biol Lett 3:501–504. doi:10.1098/rsbl.2007.0253

    Article  PubMed Central  PubMed  Google Scholar 

  • Marques SG, Silva CM, Saldanha PC, Rezende MA, Vicente VA, Queiroz-Telles F, Costa JM (2006) Isolation of Fonsecaea pedrosoi from the shell of the babassu coconut (Orbignya phalerata Martius) in the Amazon region of Maranhão Brazil. Jpn J Med Mycol 47:305–311

    Article  Google Scholar 

  • Matsushita A, Jilong L, Hiruma M, Kobayashi M, Matsumoto T, Ogawa H, Padhye AA (2003) Subcutaneous phaeohyphomycosis caused by Veronaea botryosa in the People’s Republic of China. J Clin Microbiol 41:2219–2222. doi:10.1128/JCM.41.5.2219-2222.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer VE, Volgmayr H (2009) Mycelial carton species galleries of Azteca brevis (Formicidae) as a multispecies network. Proc R Soc B 276:3265–3273. doi:10.1098/rspb.2009.0768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morio F, Le Berre J-Y, Garcia-Hermoso D, Najafzadeh MJ, de Hoog GS, Bernard L, Michau C (2012) Phaeohyphomycosis due to Exophiala xenobiotica as a cause of fungal arthritis in an HIV-infected patient. Med Mycol 50:513–517. doi:10.3109/13693786.2011.648218

    Article  PubMed  Google Scholar 

  • Mueller UG (2002) Ant versus fungus versus mutualism: ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 160:67–98. doi:10.1086/342084

    Article  Google Scholar 

  • Mueller UG, Rabeling C (2008) A breakthrough innovation in animal evolution. Proc Natl Acad Sci 105:5287–5288. doi:10.1073/pnas.0801464105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D (2001) The origin of the Attini ant-fungus mutualism. Q Rev Biol 76:169–197

    Article  CAS  PubMed  Google Scholar 

  • Pagnocca FC, Rodrigues A, Nagamoto NS, Bacci M Jr (2008) Yeast and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Leeuwenhoek 94:517–526. doi:10.1007/s10482-008-9268-5

    Article  PubMed  Google Scholar 

  • Pagnocca FC, Rodrigues A, Bacci M Jr (2011) Micro-organismos associados às formigas-cortadeiras. In: Della Lucia TMC (ed) Formigas-cortadeiras: da Bioecologia ao Manejo. Editora UFV, Brasil, pp 262–283

    Google Scholar 

  • Pagnocca FC, Masiulionis VE, Rodrigues A (2012) Specialized fungal parasites and opportunistic fungi in gardens of Attine ants. Psyche 2012:1–9. doi:10.1155/2012/905109

    Article  Google Scholar 

  • Prenafeta-Boldú FX, Summerbell RC, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard. FEMS Microbiol Rev 30:109–130. doi:10.1111/j.1574-6976.2005.00007.x

    Article  PubMed  Google Scholar 

  • Qureshi ZA, Kwak EJ, Nguyen MH, Silveira FP (2012) Ochroconis gallopava: a dematiaceous mold causing infections in transplant recipients. Clin Transpl 26:17–23. doi:10.1111/j.1399-0012.2011.01528.x

    Article  Google Scholar 

  • Rodrigues A, Bacci M Jr, Mueller UG, Ortiz A, Pagnocca FC (2008) Microfungal weeds in the leafcutter ant symbiosis. Microb Ecol 56:604–614. doi:10.1007/s00248-008-9380-0

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues A, Mueller UG, Ishak HD, Bacci M Jr, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78:244–255. doi:10.1111/j.1574-6941.2011.01152.x

    Article  CAS  PubMed  Google Scholar 

  • Satow MM, Attili-Angelis D, de Hoog GS, Angelis DF, Vicente VA (2008) Selective factors involved in oil flotation isolation of black yeasts from the environment. Stud Mycol 61:157–163. doi:10.3114/sim.2008.61.16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saunte DM, Tarazooie B, Arendrup MC, de Hoog GS (2012) Black yeast-like fungi in skin and nail: it probably matters. Mycoses 55:161–167. doi:10.1111/j.1439-0507.2011.02055.x

    CAS  PubMed  Google Scholar 

  • Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56:1267–1274. doi:10.1016/j.toxicon.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  • Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci 105:5435–5440. doi:10.1073/pnas.0711024105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva A, Bacci M Jr, Pagnocca FC, Bueno OC, Hebling MJA (2006) Starch metabolism in Leucoagaricus gongylophorus, the symbiotic fungus of leaf-cutting ants. Microbiol Res 161:299–303

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K (1998) Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Leeuwenhoek 74:271–281. doi:10.1023/A:1001753131034

    Article  CAS  PubMed  Google Scholar 

  • Sudhadham M, Dorrestein G, Prakitsin S, Sivichai S, Chaiwat R, de Hoog GS (2008) The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest. Stud Mycol 61:145–156. doi:10.3114/sim.2008.61.15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer R, Breed M, Winston M, Espelie K (eds) Pheromone communication in social insects. Westview Press, Colorado, pp 79–103

    Google Scholar 

  • Vasconcelos HL, Cherrett JM (1996) The effect of wilding on the selection of leaves by the leaf-cutting ant Atta laevigata. Entomol Exp Appl 78:215–220

    Article  Google Scholar 

  • Vicente VA, Attili-Angelis D, Pie MR, Queiroz-Telles F, Cruz LM, Najafzadeh MJ, de Hoog GS, Zhao J, Pizzirani-Kleiner A (2008) Environmental isolation of black yeast-like fungi involved in human infection. Stud Mycol 61:137–144. doi:10.3114/sim.2008.61.14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voglmayr H, Mayer V, Maschwitz U, Moog J, Djieto-Lordon C, Blatrix R (2011) The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115:1077–1091. doi:10.1016/j.funbio.2010.11.006

    Article  PubMed  Google Scholar 

  • Weber NA (1972) The fungus-culturing behavior of ants. Am Zool 12:577–587. doi:10.1093/icb/12.3.577

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, White T, Sninsky JJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Zhao J, Zeng J, de Hoog GS, Attili-Angelis D, Prenafeta-Boldú FX (2010) Isolation and identification of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol 60:149–156. doi:10.1007/s00248-010-9651-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by “Fundação de Amparo a Pesquisa do Estado de São Paulo” (FAPESP—Proc. 2011/14532-9) and INCT-Proc. 573742/2009-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Pagnocca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, A.P.M., Attili-Angelis, D., Baron, N.C. et al. Leaf-cutting ants: an unexpected microenvironment holding human opportunistic black fungi. Antonie van Leeuwenhoek 106, 465–473 (2014). https://doi.org/10.1007/s10482-014-0215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0215-3

Keywords

Navigation