Skip to main content
Log in

Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Fungi isolated from partially decayed wood log samples showing characteristic diversity for spore colour, colony morphology and arrangement of spores were assessed for cellulolytic enzyme production. Isolates showing a cellulolytic index of ≥2.0 were assayed for filter paper (FP) cellulase and β-glucosidase (BGL) production. Molecular characterization confirmed the identity of the selected cellulolytic isolate as a strain of Aspergillus niger (A. niger HN-2). Addition of 2 % (w/v) urea enhanced FP and BGL activity by about 20 and 60 %, respectively. Validation studies conducted at parameters (29 °C, pH 5.4, moisture content 72 % and 66 h) optimized through response surface methodology in a solid-state static tray fermentation resulted in FP, BGL, cellobiohydrolase I (CBHI), endoglucanase (EG), xylanase activity and protein content of 25.3 FPU/g ds, 750 IU/g ds, 13.2 IU/g ds, 190 IU/g ds, 2890 IU/g ds and 0.9 mg/ml, respectively. In comparison, A. niger N402 which is a model organism for growth and development studies, produced significantly lower FP, BGL, CBHI, EG, xylanase activity and protein content of 10.0 FPU/g ds, 100 IU/g ds, 2.3 IU/g ds, 50 IU/g ds, 500 IU/g ds and 0.75 mg/ml, respectively under the same process conditions as were used for A. niger HN-2. Process optimization led to nearly 1.8- and 2.2-fold increase in FP and BGL activity, respectively showing promise for cellulase production by A. niger HN-2 at a higher scale of operation. Zymogram analysis revealed two isoforms each for EG and cellobiohydrolase and three isoforms for BGL. Crude cellulase complex produced by A. niger HN-2 exhibited thermostability under acidic conditions showing potential for use in biofuel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar CL (2001) Biodegradation of the cellulose from sugar cane bagasse by fungal cellulase. Ciˆencia e Tecnologia de Alimentos 3:117–121

    Google Scholar 

  • Aiba S, Humphrey AE, Millis NF (1973) Kinetics. In: Biochemical Engineering. 2nd edn. New York, Academic Press, pp 92–127

  • Bailey MJ, Tahtiharju J (2003) Efficient cellulose production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl Microbiol Biotechnol 62:156–162

    Article  CAS  PubMed  Google Scholar 

  • Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag 32:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Botella C, de Ory I, Webb C, Cantero D, Blandino A (2005) Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 26:100–106

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brijwani K, Vadlani PV (2011) Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzym Res. doi:10.4061/2011/860134

    Google Scholar 

  • Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45:120–128

    Article  CAS  Google Scholar 

  • Chinedu SN, Nwinyi OC, Okochi VI (2008) Growth and cellulose activity of wild-type Aspergillus niger ANL301 in different carbon sources. Can J Pure Appl Sci 2:357–362

    Google Scholar 

  • Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011) Value addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod 34:1160–1167

    Article  CAS  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK, Verma M (2012) Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid state fermentation. Ind Crops Prod 38:6–13

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Gielkens MM, Dekkers E, Visser J, Graaff LH (1999) Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XInR for their expression. Appl Environ Microbiol 65:4340–4345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gowthaman MK, Raghava Rao KSMS, Ghildyal NP, Karnath N (1993) Gas concentration and temperature gradient in a packed bed solid state fermenter. Biotechnol Adv 11:611–620

    Article  CAS  PubMed  Google Scholar 

  • Gwande PV, Kamat MY (1999) Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J Appl Microbiol 87:511–519

    Article  Google Scholar 

  • He H, Qin Y, Chen G, Nan L, Liang Z (2013) Two-step purification of a novel β-glucosidase with high transglycosylation activity and another hypothetical β-glucosidase in Aspergillus oryzae HML366 and enzymatic characterization. Appl Biochem Biotechnol. doi:10.1007/s12010-012-9936-9

    Google Scholar 

  • Holker U, Hofer M, Lenz J (2004) Biotechnological advantages of laboratory scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  CAS  PubMed  Google Scholar 

  • Jatinder K, Chadha BS, Saini HS (2006) Optimization of medium components for production of cellulase by Melanocarpus sp. MTCC 3922 under solid state fermentation. World J Microbiol Biotechnol 22:15–22

    Article  CAS  Google Scholar 

  • Javed MR, Rashid MH, Nadeem H, Riaz M, Perveen R (2009) Catalytic and thermodynamic characterization of endoglucanase (CMCase) from Aspergillus oryzae cmc-1. Appl Biochem Biotechnol 157:483–497

    Article  CAS  PubMed  Google Scholar 

  • Job J, Sukumaran RK, Jayachandran K (2010) Production of a highly glucose tolerant β-glucosidase by Paecilomyces variotii MG3: optimization of fermentation conditions using Plackett–Burman and Box-Behnken experimental designs. World J Microbiol Biotechnol 26:1385–1391

    Article  CAS  Google Scholar 

  • Juwaied AA, Al-amiery AAH, Abdumuniem Z, Anaam U (2011) Optimization of cellulase production by Aspergillus niger and Tricoderma viridae using sugar cane waste. J Yeast Fungal Res 2:19–23

    CAS  Google Scholar 

  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s Iodine. Curr Microbiol 57:503–507

    Article  CAS  PubMed  Google Scholar 

  • Kaur B, Sharma M, Soni R, Oberoi HS, Chadha BS (2013) Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Appl Biochem Biotechnol 169:393–407

    Article  CAS  PubMed  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioengg 109:1083–1087

    Article  CAS  Google Scholar 

  • Lee CK, Darah I, Ibrahim CO (2011) Production and optimization of cellulase enzyme using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnol Res Int. doi:10.4061/2011/658493

    PubMed Central  PubMed  Google Scholar 

  • Maeda RN, da Silva MMP, Santa Anna LLM, Pereira JN (2010) Nitrogen source optimization for cellulase production by Penicillium funiculosum using a sequential experimental design methodology and the desirability function. Appl Biochem Biotechnol 161:411–422

    Article  CAS  PubMed  Google Scholar 

  • Niranjane AP, Madhou P, Stevenson TW (2007) The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantean. Enzym Microbial Technol 40:1464–1468

    Article  CAS  Google Scholar 

  • Oberoi HS, Sandhu SK, Vadlani PV (2012) Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food Bioprod Process 90:257–265

    Article  CAS  Google Scholar 

  • Pushalkar S, Rao KK, Menon K (1995) Production of beta-glucosidase by Aspergillus terrus. Curr Microbiol 30:255–258

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Reddy SM (1985) Production of extracellular cellulase-hemicellulase complex by Macrophomina phaseolina, the seed rot fungus of Sesame (Sesamum indicum). J Indian Bot Soc 64:377–380

    Google Scholar 

  • Sandhu SK, Oberoi HS, Dhaliwal SS, Babbar N, Kaur U, Nanda D, Kumar D (2012) Ethanol production from Kinnow mandarin (Citrus reticulata) peels via simultaneous saccharification and fermentation using crude enzyme produced by Aspergillus oryzae and the thermotolerant Pichia kudriavzevii strain. Ann Microbiol 62:655–666

    Article  Google Scholar 

  • Saqib AAN, Hassan M, Khan FK, Baig S (2010) Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem 45:641–664

    Article  CAS  Google Scholar 

  • Senthilkumar V, Gunasekaran P (2005) Bioethanol production from cellulosic substrates: engineered bacteria process integration challenges. J Sci Ind Res 64:845–853

    CAS  Google Scholar 

  • Sherief AA, El-Tanash AB, Atia N (2010) Cellulase production by Aspergillus fumigatus grown on mixed substrate of rice straw and wheat bran. Res J Microbiol 5:199–211

    Article  CAS  Google Scholar 

  • Soni R, Nasir A, Chadha BS (2010) Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind Crops Prod 31:277–283

    Article  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34:421–424

    Article  CAS  Google Scholar 

  • Szengyel Z, Zacchi G, Varga A, Reczey K (2000) Cellulase production of Trichoderma reesei Rut-30 using steam-pretreated spruce. Hydrolytic potential of cellulases on different substrate. Appl Biochem Biotechnol 84:679–691

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urbanszki K, Szakacs G, Tengerdy RP (2000) Standardization of filter paper activity assay for solid substrate fermentation. Biotechnol Lett 22:65–69

    Article  CAS  Google Scholar 

  • Uusitalo JM, Nevalainen KM, Harkki AM, Knowles JK, Penttila ME (1991) Enzyme production by recombinant Trichoderma reesei strains. J Biotechnol 17:35–49

    Article  CAS  PubMed  Google Scholar 

  • Warren RAJ (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212

    Article  CAS  PubMed  Google Scholar 

  • Willick GE, Seligy VL (1985) Multiplicity in cellulases of Schizophyllum commune. Eur J Biochem 151:89–96

    Article  CAS  PubMed  Google Scholar 

  • Yano KS, Poulos TL (2003) New understandings of thermostable, peizostable enzymes. Curr Opin Microbiol 14:360–365

    CAS  Google Scholar 

  • Zabel RA, Morrell JJ (1992) Wood microbiology, decay and its prevention. Academic Press, San Diego, p 476

    Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sang Q, Zhang W (2012) Statistical optimization of cellulases production by Aspergillus niger HQ-1 in solid-state fermentation and partial enzymatic characterization of cellulases on hydrolyzing chitosan. Ann Microbiol 62:629–645

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thankfully acknowledge the financial assistance received under the NAIP Project (418301-3) funded by World Bank from the Indian Council of Agricultural Research, New Delhi, India for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Singh Oberoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberoi, H.S., Rawat, R. & Chadha, B.S. Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2. Antonie van Leeuwenhoek 105, 119–134 (2014). https://doi.org/10.1007/s10482-013-0060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0060-9

Keywords

Navigation