Skip to main content
Log in

White rot Basidiomycetes isolated from Chiloé National Park in Los Lagos region, Chile

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Wood decomposition is an important component in forest ecosystems but information about the diversity of fungi causing decay is lacking. This is especially true for the temperate rain forests in Chile. These investigations show results of a biodiversity study of white-rot fungi in wood obtained from Chiloé National Park in Los Lagos region, Chile. Culturing from white-rotted wood followed by sequencing of the complete internal transcribed spacer region of the ribosomal DNA (rDNA) or partial large subunit region of the rDNA, identified 12 different species in the Basidiomycota. All of these fungi were characterized as white rot fungi and were identified with a BLAST match of 97 % or greater to sequences in the GenBank database. Fungi obtained were species of Phlebia, Mycoacia, Hyphodontia, Bjerkandera, Phanerochaete, Stereum, Trametes, and Ceriporiopsis. This report identifies for the first time in Chile the species Ceriporiopsis subvermispora, Hyphodontia radula, Phlebia radiata, Phanerochaete affinis, Peniophora cinerea, Stereum gausapatum, Phlebia setulosa and Phanerochaete sordida. Scanning electron microscopy was used to characterize the type of decay caused by the fungi that were isolated and a combination of selective lignin degraders and simultaneous white rot fungi were found. Fungi that cause a selective degradation of lignin are of interest for bioprocessing technologies that require modification or degradation of lignin without cellulose removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo F, Pizzul L, Castillo M, Cuevas R, Diez M (2011) Degradation of policyclic aromatic hydrocarbons by the Chilean white-rot fungus A. discolor. J Hard Mater 185:212–219. doi:10.1016/j.jhazmat.2010.09.020

    Article  CAS  Google Scholar 

  • Agosin E, Blanchette RA, Silva H, Lapierre C, Cease K, Ibach R, Abad A, Muga P (1990) Characterization of palo podrido, a natural process of delignification in wood. Appl Environ Microbiol 56:65–74

    PubMed  CAS  Google Scholar 

  • Akhtar M, Blanchette RA, Kent T (1997) Fungal Delignification and Biomechanical Pulping of Wood. Adv Biochem Eng/Biotechnol 57:159–195

    Article  CAS  Google Scholar 

  • Arias H, Parada M, Vidal G (1999) Enzimas lignoliticas producidas por hongos del bosque nativo del Sur de Chile: no solo de Madera vive el hombre. Chile Forestal 6–7

  • Barrasa J, González A, Martínez A (1992) Ultrastructural Aspects of Fungal Delignification of Chilean Woods by G. australe and P. chrysocrea A Study of Natural and In Vitro Degradation. Holzforschung 46:1–8. doi:10.1515/hfsg.1992.46.1.1

    Article  CAS  Google Scholar 

  • Bavendamm W (1928) Uber dad vorkommen und den nachweisvon oxydasen bei holzstorenden pilzen. Z Ptlkrankh Schulz 38:257–276

    CAS  Google Scholar 

  • Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108. doi:10.1007/s00253-010-2585-4

    Article  PubMed  CAS  Google Scholar 

  • Blanchette R (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398. doi:10.1146/annurev.py.29.090191.002121

    Article  CAS  Google Scholar 

  • Blanchette RA (2003) Deterioration in historic and archaeological Woods from terrestrial sites. In: Koestler RJ, Koestler VR, Charola AE, Nieto-Fernandez FE (eds) Art, biology, and conservation biodeterioration of works of art. The Metropolitan Museum of Art, New York, pp 328–347

    Google Scholar 

  • Blanchette RA, Simpson E (1992) Soft rot decay and wood pseudomorphs in an ancient coffin (700 BC) from tumulus MM at Gordion, Turkey. Int Assoc Wood Anat Bull 13:201–213

    Google Scholar 

  • Blanchette RA, Jurgens J, Held B, Arenz B, Smith J (2005) Decay of historic and archeological wooden structures: degradation processes and molecular characterization of wood destroying fungi. http://www.iaws-web.org/files/file/2005-Chile-Fullpaper-Blanchette-Jurgens-Held-Arenz-Smith.pdf Accessed 12 September 2012

  • Butin H, Peredo H (1986) Hongos parásitos en coníferas de América del Sur con especial referencia a Chile. Stuttgart, Berlin

    Google Scholar 

  • Cubero O, Crespo A, Fatehi J, Bridge P (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium stored, lichenized, and other fungi. Plant Syst Evol 216:243–249. doi:10.1007/BF01084401

    Article  CAS  Google Scholar 

  • Dashtban M, Schraft H, Syed T, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    PubMed  CAS  Google Scholar 

  • Díaz-Vaz J (1979) Claves para la identificación de maderas de árboles nativos y cultivados en Chile. Bosque 3:15–25

    Google Scholar 

  • Dill I, Kraepelin G (1986) Palo Podrido: model for extensive delignification of wood by G. applanatum. Appl Environ Microbiol 52:1305–1312

    PubMed  CAS  Google Scholar 

  • Donoso C, Becerra J, Martinez M, Garrido N, Silva M (2008) Degradative ability 2,4,6-tribromofenol by saprophytic fungi T. versicolor and Agaricus augustus isolated from Chilean forestry. World J Microbiol Biotechnol 24:961–968. doi:10.1007/s11274-007-9559-4

    Article  CAS  Google Scholar 

  • Elissetche J, Ferraz A, Parra C, Freer J, Baeza J, Rodriguez J (2001) Biodegradation of Chilean native wood species D. winteri and N. dombeyi, by G. australe. World J Microbiol Biotechnol 17:577–581

    Article  CAS  Google Scholar 

  • Elissetche J, Ferraz A, Freer J, Rodriguez J (2007) Enzymes produced by G. australe growing on wood and in submerged cultures. World J Microbiol Biotechnol 23(3):429–434. doi:10.1007/s11274-006-9243-0

    Article  CAS  Google Scholar 

  • Eriksson K (1981) Fungal degradation of wood components. Pure Appl Chem 53:33–43

    Article  CAS  Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, Berlin/New York

    Book  Google Scholar 

  • Eyzaguirre J (1988) Identificación purificación y caracterización de celulasas en microorganismos del “PALO PODRIDO”. http://ri.conicyt.cl/575/article-23338.html. Accessed 29 December 2011

  • Ferraz A, Parra C, Freer J, Baeza J, Rodriguez J (2000) Characterization of white zones produced on Pinus radiata wood chips by G. australe and C. subvermispora. World J Microbiol Biotechnol 16:641–645. doi:10.1023/A:1008981521479

    Article  Google Scholar 

  • Ferraz A, Parra C, Freer J, Baeza J, Rodriguez J (2001) Occurrence of iron-reducing compounds in biodelignified “palo podrido” wood samples. Int Biodeter Biodegr 47:203–208. doi:10.1016/S0964-8305(01)00057-9

    Article  CAS  Google Scholar 

  • Furci G (2007) Fungi Austral. Guía de campo de los hongos más vistosos de Chile, Chile

    Google Scholar 

  • Furci G (2008) Diversidad de especies Hongos. In: Ocho libros (ed) Biodiversidad de Chile: Patrimonio y Desafíos, Chile, pp 366-375

  • Gamundi I (2003) Discomycetes (Fungi, ascomycota) de Chile Austral I. Darwiniana 41:29–36

    Google Scholar 

  • Gamundi J, Horak E (1993) Hongos de los bosques andino-patagónicos. Buenos Aires, Argentina

    Google Scholar 

  • Garnica S, Valenzuela E (1998) Estudio Macro-Microscopico y Enzimatico Cualitativo de Cepas Miceliales de Basidicarpos de Agaricales II. Boletín Micológico 13:63–69

    Google Scholar 

  • Garnica S, Ramírez C, Valenzuela E (1997) Estudio Macro-Microscopico y Enzimatico Cualitativo de Cepas Miceliales de Basidicarpos de Agaricales I. Boletín Micológico 12:63–73

    Google Scholar 

  • Gelsomino G, Faedda R, Rizza C, Petrone G, Cacciola G (2011) New platforms for the diagnosis and identification of fungal and bacterial pathogens. In: Méndez-Vilas A (ed) Microbiology book series. Science against microbial pathogens: communicating current research and technological advances. pp. 622–630, España

  • Ginns J, Lefebvre MNL (1993) Lignicolous corticioid fungi (Basidiomycota) of North America: Systematics, distribution, and ecology. APS Press, St. Paul

    Google Scholar 

  • González A (1980) Las pudriciones de la madera denominadas huempe o palo podrido de los bosques del sur de Chile y su etiología. Universidad Austral, Tesis

    Google Scholar 

  • González A, Grinbergs J, Griva E (1986) Biological transformation of wood into feed for cattle-”Palo Podrido”. Zentralbl Mikrobiol 141:181–186

    Google Scholar 

  • González A, Martinez A, Almendros G, Grinbergs J (1989) A study of yeasts during the delignification and fungal transformation of wood into cattle feed in Chilean rain forest. Antonie Van Leeuwenhoek 55:221–236. doi:10.1007/BF00393851

    Article  PubMed  Google Scholar 

  • Guillen Y (2008) Capacidad lignocelulolítica y tolerancia a metales pesados de hongos pudridores de madera, que se desarrollan en la VIII región, y su posible uso biotecnológico. Universidad de Concepción, Tesis

    Google Scholar 

  • Guillen Y, Navias D, Machuca A (2008) Tolerance to wood preservatives by copper-tolerant wood-rot fungi native to south-central Chile. Biodegradation 20:135–142. doi:10.1007/s10532-008-9207-1

    Article  PubMed  Google Scholar 

  • Halis R, Tan H, Ashaari Z, Mohamed R (2012) Biomodification on kenaf chip. Bio Res 7:984–987

    CAS  Google Scholar 

  • Highley T, Dashek W (1998) Biotechnology in the study of brown and white rot decay. In: Bruce A, Palferman J (eds) Forest products biotechnology. Taylor & Francis, London, pp 15–36

    Google Scholar 

  • Kim G, Lim Y, Song Y, Kim J (2005) Decay fungi from playgound wood products in service using 28S rDNA sequence analysis. Holzforschung 59:459–466. doi:10.1515/HF.2005.076

    Article  CAS  Google Scholar 

  • Kirk T, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young R, Akhtar M (eds) Environmentally Friendly Technologies for the Pulp and Paper Industry. Wiley, New York, pp 273–307

    Google Scholar 

  • Knoche W, Cruz-Knoche E, Pacotet M (1929) Der “Palo podrido” auf Chilod. Ein Beitrag zur Kenntnis der naturlichen Umwandlung des Holzes durch Pilze in ein Futtermittel. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Zweite Abt 79:427–431

    Google Scholar 

  • Kühlwein H (1963) Zur Kenntnis des “Palo podrido”, eines mikrobiell abgebauten Holzes aus Südchile. Zentralbl f Parasitenk Infektionskrankh und Hygiene Abt II 116:294–299

    Google Scholar 

  • Lamar RT, Main LM, Dietrich DM, Glaser JA (1999) Screening of fungi for soil remediation potential. In: Adriano DC, Bollag JM, Frankenberger WT, Sims RC (eds) Bioremediation of contaminated soils. American Society of Agronomy, Madison, pp 437–456

    Google Scholar 

  • Lanfranco D, Ide S, Ruiz C, Vives I, Peredo H (2003) Caracterización fitosanitaria de astillas de Eucaliptus spp. y de especies nativas. Bosque 24:47–54. doi:10.4067/S0717-92002003000100004

    Google Scholar 

  • Lazo W (1995) Hongos. In: Simonetti J, Arroyo M, Spotorno A, Lozada E (eds) Diversidad biológica en Chile. Comisión Nacional de Ciencia y Tecnología, Santiago, pp 21–25

    Google Scholar 

  • Lazo W (1996) Algunos Ascomycetes y Basidiomycetes interesantes de Chile. Boletín Micológico 11:99–102

    Google Scholar 

  • Lazo W (2001) Hongos de Chile: atlas micológico. Facultad de Ciencias de la Universidad de Chile, Chile

    Google Scholar 

  • Leisola M, Pastinen O, Axe D (2012) Lignin—designed randomness. BIOcomplexity 2012:1–11. doi:10.5048/BIO-C.2012.3

    Google Scholar 

  • Lim W, Kim J, Chedgy R, Breuil C (2005) Fungal diversity from western red cedar fences and their resistance to B-thujaplicin. Antonie Van Leeuwenhoek 87:109–117. doi:10.1007/s10482-004-1729-x

    Article  PubMed  CAS  Google Scholar 

  • Martínez A, Speranza M, Ruiz-Dueñas F, Ferreira P, Camarero S, Guillén F, Martínez M, Gutiérrez A, Del Río J (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Meteorological Directorate of Chile (2011) Climas de Chile. http:/www.meteochile.gob.cl/climas_decima_region.html. Accessed 15 July 2011

  • Minter W, Peredo H (2006) Hongos de Chile. http:/www.cybertruffle.org.uk/chilfung. Accessed 19 July 2011

  • Moncalvo JM, Nilsson RH, Koster B, Dunham SM, Bernauer T, Matheny PB, Porter TM, Margaritescu S, Weiss M, Garnica S, Danell E, Langer G, Langer E, Larsson E, Larsson KH, Vilgalys R (2006) The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937–948. doi:10.3852/mycologia.98.6.937

    Article  PubMed  Google Scholar 

  • Montiel A (2005) Identificación de la enzima responsable de la degradación de pentaclorofenol (PCF) en Amylomyces rouxii y optimización del mecanismo de degradación mediante la expresión heteróloga de peroxidasas. Universidad Autónoma Metropolitana, Tesis

    Google Scholar 

  • Moreth U, Schmidt O (2000) Identification of indoor rot fungi by taxón-specific priming polymerase chain reaction. Holzforschung 54:1–8. doi:10.1515/HF.2000.001

    Article  CAS  Google Scholar 

  • Mueller G, Schmit J, Hubndorf S, O`dell T, Lodge D, Leacock P, Mata M, Umañia L, Wu Q, Czederpiltz D (2004) Recommended protocols for sampling macrofungi. In: Mueller G, Bills G, Foster M (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic Press, California, pp 169–172

    Google Scholar 

  • Mujica F, Vergara C, Oehrens E (1980) Flora fungosa chilena. Universidad de Chile, Santiago

    Google Scholar 

  • National Center for Biotechnology Information, GenBank (2013) Standard Nucleotide BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome. Accessed 12 September 2012

  • O’brien H, Lynn J, Jackson J, Moncalvo J, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550. doi:10.1128/AEM.71.9.5544- 5550.2005

    Article  PubMed  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Sanfuentes E, Rodriguez J (2008) Fungal endophytes in xylem of healthy Chilean trees and their posible role in early wood decay. Fungal Divers 33:77–86

    Google Scholar 

  • Palma M, Valenzuela E, Parra P, Gutierrez M, Torelli L (2005) Cerrena unicolor (Bull.) Murr (Basidiomycota) Aislado de micangio de Tremex fuscicornis Fabr. (Hymenoptero Siricidae) Asociado a Decaimiento y Pudrición del Alamo (Populus sp.) en Chile. Boletín Micológico 20:57–61

    Google Scholar 

  • Parada M, Arias H, Vidal G (2000) Aislamiento y selección de basidiomicetes nativos con capacidad lignolítica. Boletín Micológico 15:23–29

    Google Scholar 

  • Peredo H (1987) Fitoparasitos en Nothofagus chilenos. Bosque 8:105–107

    Google Scholar 

  • Philippi F (1983) Die Pilze Chiles, solveit dieselben als Nahrungsmittel gebraucht werden. Hedwigia 32:115–118

    Google Scholar 

  • Prewiit M, Diehl S, Mcelroy T, Diehl W (2008) Comparison of general fungal and basidiomycete-specific ITS primers for identification of wood decay fungi. Forest Prod J 58:66–71

    Google Scholar 

  • Raberg U, Hogberg N, Johan C (2005) Detection and species discrimination using rDNA T-RFLP for identification of wood decay fungi. Holzforschung 59:696–702. doi:10.1515/HF.2005.111

    Article  Google Scholar 

  • Ramírez C (1988) Emendation of yeasts from decayed wood in the evergreen rainy Valdivian Forest of southern Chile. Mycopathologia 103:95–101. doi:10.1007/BF00441265

    Article  Google Scholar 

  • Ramírez C, Gonzalez A (1985) Rhodotorula nothofagi sp. nov., isolated from decayed wood in the evergreen rainy Valdivian forest of southern Chile. Mycopathologia 91:171–173. doi:10.1007/BF00446296

    Article  Google Scholar 

  • Ryvarden L, Gilbertson RL (1994) European polypores: part 2. Fungiflora, Oslo

    Google Scholar 

  • Schmidt O (2006) Wood and tree fungi: biology, damage, protection, and use. Springer, Verlag

    Google Scholar 

  • Schmidt O, Moreth U (1999) Identification of the Dry Rot Fungus, Serpula lacrymans, and the wild Merulis S. himantioides by amplified ribosomal DNA restriction analysis (ARDRA). Holzforschung 53:123–128

    Article  CAS  Google Scholar 

  • Schmidt O, Moreth U (2003) Data bank of rDNA-ITS sequences from building-rot fungi for their identification. Wood Sci and Technol 37:161–163. doi:10.1007/s00226-003-0162-z

    Article  CAS  Google Scholar 

  • Silva H, Landa A, Agosin E (1990) Aislamiento, Selección y Caracterización de Hongos Lignolíticos Chilenos. Arch Biol Med Exp 23:41–49

    Google Scholar 

  • Suwannasai H, Martín M, Phosri C, Sihanonth P, Whalley A, Spouge J (2013) Fungi in Thailand: a case study of the efficacy of an ITS barcode for automatically identifying species within the Annulohypoxylon and Hypoxylon Genera. PLoS ONE 8:e54529. doi:10.1371/journal.pone.0054529

    Article  PubMed  CAS  Google Scholar 

  • Taboada-Puig R, Lú-Chau T, Moreira M, Feijoo G, Martinez M, Lema J (2011) A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase. World J Microbiol Biotechnol 27:115–122. doi:10.1007/s11274-010-0435-2

    Article  Google Scholar 

  • Tortella G, Rubilar O, Gianfreda L, Valenzuela E, Diez M (2008) Enzymatic characterization of Chilean native wood-rotting fungi for potenial use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 24:2805–2818. doi:10.1007/s11274-008-9810-7

    Article  CAS  Google Scholar 

  • Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219

    Google Scholar 

  • Valenzuela E, Barrera S (2001) Determinación taxonómica y enzimática cualitativa de hongos en aserrín de P. radiata en diversas condiciones naturales. Boletín Micológico 16:71–78

    Google Scholar 

  • Valenzuela E, Ramírez C, Moreno G, Polette M, Garniga S, Peredo H, Grinbergs J (1996) Agaricales más comunes recolectados en el Campus Isla Teja de la Universidad Austral de Chile. Bosque 17:51–63

    Google Scholar 

  • Vasiliauskas R, Stenlid J (1998) Fungi inhabiting stems of Picea abies in a managed stand in Lithuania. Forest Ecol Manag 109:119–126. doi:10.1016/S0378-1127(98)00226-6

    Article  Google Scholar 

  • Vasiliauskas R, Larsson E, Larsson K, Stenlid J (2005) Persistence and long-term impact of Rotstop biological control agent on mycodiversity of Picea abies stumps. Biol Control 32:295–304. doi:10.1016/j.biocontrol.2004.10.008

    Article  Google Scholar 

  • Wang CJK, Zabel RA (1990) Identification manual for fungi from utility poles in the Eastern United States. Allen Press, Lawrence

    Google Scholar 

  • Schoch C, Seifert K, Huhndorf S, Robert V, Spouge J, Levesque C, Chen W, and fungal barcoding consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109: 6241-6246. doi: 10.1073/pnas.1117018109

  • Zadrazil F, Grinbergs J, González A (1982) “Palo podrido”—Decomposed wood used as feed. Appl Microbiol Biotechnol 15:167–171. doi:10.1007/BF00511242

    Article  Google Scholar 

Download references

Acknowledgments

The authors of this study would like to thank the contribution of: Research Office of Universidad de Valparaíso (DIUV) for financing the project 40/2008; Postgraduate Studies Office of the Universidad del Bío Bío; Biodeterioration Laboratory of the Department of Wood Engineering, Universidad del Bío Bío; Laboratory of Materials Biodeterioration and Biodegradation of the School of Civil Construction, Universidad de Valparaíso; Molecular Biology Laboratory of the Department of Biomedical Sciences, Universidad de Valparaíso; Laboratory of Oral Biochemistry and Biology, Universidad de Chile; Corporación Nacional Forestal CONAF for its support and for authorizing us to enter Chiloé National Park and extract biological samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ortiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, R., Navarrete, J., Oviedo, C. et al. White rot Basidiomycetes isolated from Chiloé National Park in Los Lagos region, Chile. Antonie van Leeuwenhoek 104, 1193–1203 (2013). https://doi.org/10.1007/s10482-013-0041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0041-z

Keywords

Navigation