Skip to main content
Log in

The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The gene encoding the β-galactosidase from the dairy Lactococcus lactis IL1403 strain was cloned, sequenced and overexpressed in Escherichia coli. The purified enzyme has a tetrameric arrangement composed of four identical 120 kDa subunits. Biochemical characterization showed that it is optimally active within a wide range of temperatures from 15 to 55 °C and of pH from 6.0 to 7.5. For its maximal activity this enzyme requires only 0.8 mM Fe2+ and 1.6 mM Mg2+. Purified protein displayed a high catalytic efficiency of 102 s−1 mM−1 for lactose. The enzyme stability was increased by immobilization mainly at low pH (from 4.0 to 5.5) and high temperatures (55 and 60 °C). The bioconversion of lactose using the L. lactis β-galactosidase allows the production of lactose with a high bioconversion rate (98 %) within a wide range of pH and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alazzeh AY, Ibrahim SA, Song D, Shahbazi A, AbuGhazaleh AA (2009) Carbohydrate and protein sources influence the induction of α- and β-galactosidases in Lactobacillus reuteri. Food Chem 117:654–659

    Article  CAS  Google Scholar 

  • Bahna SL (1996) Is it milk allergy or lactose intolerance? Immunol All Clin N Am 16:187–198

    Article  Google Scholar 

  • Bialkowska AM, Cieslinski H, Nowakowska KM, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microb 19:825–835

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Che W, Chen H, Xia Y, Zhao J, Tian F, Zhang H (2008) Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J Dairy Sci 91:1751–1758

    Article  Google Scholar 

  • Cieslinski H, Kur J, Bialkowska A, Baran I, Makowski K, Turkiewicz M (2005) Cloning, expression, and purification of a recombinant cold-adapted β-galactosidase from antarctic bacterium Pseudoalteromonas sp. 22b. Protein Expr Purif 39:27–34

    Article  PubMed  CAS  Google Scholar 

  • Coombs JM, Brenchley JE (1999) Biochemical and phylogenetic analyses of a cold-active β-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl Environ Microbiol 65:5443–5450

    PubMed  CAS  Google Scholar 

  • Di Lauro B, Rossi M, Moracci M (2006) Characterization of a β-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 10:301–310

    Article  PubMed  Google Scholar 

  • Fernandes S, Geueke B, Delgado O, Coleman J, Hatti-Kaul R (2002) β-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321

    Article  PubMed  CAS  Google Scholar 

  • Grosová Z, Rosenberg M, Rebroš M (2008) Perspectives and applications of immobilised β-galactosidase in food industry—a review. Czech J Food Sci 26:1–14

    Google Scholar 

  • Gul-Guven R, Guven K, Poli A, Nicolaus B (2007) Purification and some properties of a β-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Enz Microb Technol 40:1570–1577

    Article  CAS  Google Scholar 

  • Haider T, Husain Q (2009) Hydrolysis of milk/whey lactose by β-galactosidase: a comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme. Chem Eng Process Process Intensif 48:576–580

    Article  CAS  Google Scholar 

  • Hildebrandt P, Wanarska M, Kur J (2009) A new cold-adapted β-d-galactosidase from the Antarctic Arthrobacter sp. 32c gene cloning, overexpression, purification and properties. BMC Microb 9:151–161

    Article  Google Scholar 

  • Horner TW, Dunn ML, Eggett DL, Ogden LV (2011) β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. J Dairy Sci 94:3242–3249

    Article  PubMed  CAS  Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Francois JM, Baise E, Feller G, Gerday C (2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Hung MN, Lee BH (2002) Purification and characterization of a recombinant beta-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Appl Biochem Biotechnol 58:439–445

    CAS  Google Scholar 

  • Husain Q, Ansari SA, Alam F, Azam A (2011) Immobilization of Aspergillus oryzae β-galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Inter J Biol Macromol 49:37–43

    Article  CAS  Google Scholar 

  • Iqbal S, Nguyen TH, Nguyen TT, Maischberger T, Haltrich D (2010) β-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res 345:1408–1416

    Article  PubMed  CAS  Google Scholar 

  • Iqbal S, Nguyen TH, Nguyen HA, Nguyen TT, Maischberger T, Kittl R, Haltrich D (2011) Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. J Agric Food Chem 59:3803–3811

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RH, Zhang XJ, DuBose RF, Matthews BW (1994) Three-dimensional structure of beta-galactosidase from E. coli. Nature 369:761–766

    Article  PubMed  CAS  Google Scholar 

  • Joseph FF, Somkuti GA (1979) General properties of beta-galactosidase of Xanthomonas campestris. Appl Environ Microbiol 38:554–556

    Google Scholar 

  • Juajun O, Nguyen TH, Maischberger T, Iqbal S, Haltrich D, Yamabhai M (2011) Cloning, purification and characterization of β-galactosidase from Bacillus licheniformis DSM 13. Appl Microbiol Biotechnol 89:645–654

    Article  PubMed  CAS  Google Scholar 

  • Karasova-Lipovova P, Strnad H, Spiwok V, Mala S, Kralova B, Russell NJ (2003) The cloning, purification and characterization of a cold-active #-galactosidase from the psychrotolerant Antractic bacterium Arthrobacter sp. C2–2. Enz Microb Technol 33:836–844

    Article  CAS  Google Scholar 

  • Ke X, Tang X, Gai Y, Mehmood MA, Xiao X, Wang F (2011) Molecular characterization of cold-inducible β-galactosidase from Arthrobacter sp. ON14 isolated from Antarctica. J Microbiol Biotechnol 21:236–242

    Google Scholar 

  • Kim CS, Ji ES, Oh DK (2003) Expression and characterization of Kluyveromyces lactis beta-galactosidase in Escherichia coli. Biotechnol Lett 25:1769–1774

    Article  PubMed  CAS  Google Scholar 

  • Kim CS, Ji ES, Oh DK (2004) Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima. J Appl Microbiol 97:1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Kosseva MR, Panesar PS, Kaur G, Kennedy JF (2009) Use of immobilised biocatalysts in the processing of cheese whey. Inter J Biol Macromol 45:437–447

    Article  CAS  Google Scholar 

  • Kunst A, Draeger B, Ziegernhorn J (1988) Colorimetric methods with glucose oxidase and peroxidase. In: Bergmeyer HU, Bergmeyer J, Grassl M (eds) Methods of enzymatic analysis, 3rd edn. VCH Publishers, Weinheim, pp 178–185

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Kim YS, Yeom SJ, Oh D (2011) Characterization of a glycoside hydrolase family 42 β-galactosidase from Deinococcus geothermalis. Biotechnol Lett 33:577–583

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhang M, Jiang Z, Tang L, Cong Q (2009) Characterisation of a thermostable family 42 β-galactosidase from Thermotoga maritima. Food Chem 112:844–850

    Article  CAS  Google Scholar 

  • Lu L, Xiao M, Xu X, Li Z, Li Y (2007) A novel beta-galactosidase capable of glycosyl transfer from Enterobacter agglomerans B1. Biochem Biophys Res Commun 356:78–84

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Fujimoto Y, Ikehata R, Miyaji T, Tomizuka N (2006) Purification and molecular characterization of cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72:720–725

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TH, Splechtna B, Krasteva S, Kneifel W, Kulbe KD, Divne C, Haltrich D (2007a) Characterization and molecular cloning of a heterodimeric beta-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiol Lett 269:136–144

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TH, Splechtna B, Yamabhai M, Haltrich D, Peterbauer C (2007b) Cloning and expression of the beta-galactosidase genes from Lactobacillus reuteri in Escherichia coli. J Biotechnol 129:581–591

    Article  PubMed  CAS  Google Scholar 

  • Nichele V, Signoretto M, Ghedini E (2011) β-Galactosidase entrapment in silica gel matrices for a more effective treatment of lactose intolerance. J Mol Catal B Enzy 71:10–15

    Article  CAS  Google Scholar 

  • O’Connell S, Walsh G (2006) Physicochemical characteristics of commercial lactases relevant to their application in the alleviation of lactose intolerance. Appl Biochem Biotechnol 134:179–191

    Article  PubMed  Google Scholar 

  • O’Connell S, Walsh G (2007) Purification and properties of a beta-galactosidase with potential application as a digestive supplement. Appl Biochem Biotechnol 141:1–14

    Article  PubMed  Google Scholar 

  • O’Connell S, Walsh G (2008) Application relevant studies of fungal β-galactosidases with potential application in the alleviation of lactose intolerance. Appl Biochem Biotechnol 149:129–139

    Article  PubMed  Google Scholar 

  • Ohtsu N, Motoshima H, Goto K, Tsukasaki F, Matsuzawa H (1998) Thermostable beta-galactosidase from an extreme thermophile, Thermus sp. A4: enzyme purification and characterization, and gene cloning and sequencing. Biosci Biotechnol Biochem 62:1539–1545

    Article  PubMed  CAS  Google Scholar 

  • Panesar P, Kumari S, Panesar R (2010) Potential applications of immobilized beta-galactosidase in food processing industries. Enzyme Res 27:1–14

    Article  Google Scholar 

  • Park AR, Oh DK (2010) Effects of galactose and glucose on the hydrolysis reaction of a thermostable beta-galactosidase from Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 85:1427–1435

    CAS  Google Scholar 

  • Pedrique M, Castillo FJ (1982) Regulation of beta-d-galactosidase synthesis in Candida pseudotropicalis. Appl Environ Microbiol 43:303–310

    PubMed  CAS  Google Scholar 

  • Perez-Sanchez M, Cortes Cabrera A, Garcia-Martin H, Sinisterra JV, Garcia JI, Hernaiz MJ (2011) Improved synthesis of disaccharides with Escherichia coli β-galactosidase using bio-solvents derived from glycerol. Tetrahedron 67:7708–7712

    Article  CAS  Google Scholar 

  • Phan Tran LS, Szabo L, Fulop L, Orosz L, Sik T, Holczinger A (1998) Isolation of a beta-galactosidase-encoding gene from Bacillus licheniformis: purification and characterization of the recombinant enzyme expressed in Escherichia coli. Curr Microbiol 37:39–43

    Article  Google Scholar 

  • Pisani FM, Rella R, Raia CA, Rozzo C, Nucci R, Gambacorta A, De Rosa M, Rossi M (1990) Thermostable beta-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. FEBS 187:321–328

    CAS  Google Scholar 

  • Rhimi M, Messaoud EB, Borgi MA, Khadra KB, Bejar S (2007) Co-expression of l-arabinose isomerase and d-glucose isomerase in E. coli and development of an efficient process producing simultaneously d-tagatose and d-fructose. Enz Microb Technol 40:1531–1537

    Article  CAS  Google Scholar 

  • Rhimi M, Aghajari N, Jaouadi B, Juy M, Boudebbouze S, Maguin E, Haser R, Bejar S (2009) Exploring the acidotolerance of beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion. Res Microbiol 160:775–784

    Article  PubMed  CAS  Google Scholar 

  • Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Haser R, Aghajari N (2010) Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a β-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Res Microb 161:515–525

    Article  CAS  Google Scholar 

  • Roy I, Gupta MN (2003) Lactose hydrolysis by Lactozym(TM) immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39:325–332

    Article  CAS  Google Scholar 

  • Sambroo J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Siddiqui Z, Osayande AS (2011) Selected disorders of malabsorption. Prim Care Clin Office Pract 38:395–414

    Article  Google Scholar 

  • Siso MIG, Doval SS (1994) Kluyveromyces lactis immobilization on corn grits for milk whey lactose hydrolysis. Enzyme Microb Technol 16:303–310

    Article  Google Scholar 

  • Song C, Liu GL, Xu JL, Chi ZM (2010) Purification and characterization of extracellular #-galactosidase from the psychrotolerant yeast Guehomyces pullulans 17–1 isolated from sea sediment in Antarctica. Process Biochem 45:954–960

    Article  CAS  Google Scholar 

  • Sorensen HP, Porsgaard TK, Kahn RA, Stougaard P, Mortensen KK, Johnsen MG (2006) Secreted beta-galactosidase from a Flavobacterium sp. isolated from a low-temperature environment. Appl Microbiol Biotechnol 70:548–557

    Article  PubMed  CAS  Google Scholar 

  • Vasiljevic T, Jelen P (2001) Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innov Food Sci Emerg Technol 2:75–85

    Article  CAS  Google Scholar 

  • Vasiljevic T, Jelen P (2003) Drying and storage of crude β-galactosidase extracts from Lactobacillus delbrueckii ssp. bulgaricus 11842. Innov Food Sci Emerg Technol 4:319–329

    Article  CAS  Google Scholar 

  • Vera C, Guerrero C, Illanes A (2011) Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations. Carbohydr Res 346:745–752

    Article  PubMed  CAS  Google Scholar 

  • Watterlot L, Rochat T, Sokol H, Cherbuy C, Bouloufa I, Lefèvre F, Gratadoux JJ, Honvo-Hueto E, Chilmonczyk S, Blugeon S, Corthier G, Langella P, Bermudez-Humaran LG (2011) Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. Inter J Food Microb 144:35–41

    Article  Google Scholar 

  • Weirzbicka-Wos A, Cieslinski H, Wanarska M, Kozlowska-Tylingo K, Hildebrandt P, kur J (2012) A novel cold-active #-d-galactosidase from the Paracoccus sp. 32d-gene cloning, purification and characterization. Microb Cell Fact 10:108–120

    Article  Google Scholar 

  • Wierzbicki LE, Edwards VH, Kosikowski FV (1974) Hydrolysis of lactose in acid whey using beta-galactosidase immobilized on porous glass particles: preparation and characterization of a reusable catalyst for the production of low-lactose dairy products. Biotechnol Bioeng 16:397–411

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratefulness to members of the Laboratory of Microbiological Genetics (INRA/Jouy-en-Josas) for their generous help and support. We thank Dr Michel Juy for his kind advices and Magali Dejob for her help. Our acknowledgements are also addressed to Helen Nyampinga for her help with English.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Rhimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, V., Aghajari, N., Pollet, N. et al. The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis. Antonie van Leeuwenhoek 103, 701–712 (2013). https://doi.org/10.1007/s10482-012-9852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9852-6

Keywords

Navigation