Skip to main content
Log in

Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Chromium (Cr), with its great economic importance in industrial use, is a major metal pollutant of the environment. It affects soil microbial activity and soil fertility, resulting in losses in yield of plants. Paenibacillus lentimorbus B-30488r (B-30488r) tolerated 200 μg ml−1 of Cr under in vitro conditions and produced the plant growth promoting substance indole acetic acid in the presence of Cr. Our in vitro study indicates enhancement in B-30488r biofilm formation by sodium alginate (SA) and calcium chloride (CaCl2) both in absence and presence of supplemented Cr(VI) as compared to unsupplemented control. The plant growth promoting effects caused by the B-30488r biofilm in rhizosphere of chickpea under Cr(VI) stress suggests a phytoprotective role of B-30488r biofilm. Our study reflects the multifarious role of strain B-30488r and presents it as a potent plant growth promoting and bioremediation agent useful in Cr-contaminated rhizosphere soil, whereby the SA and CaCl2 induced B-30488r biofilm on plant root acts as a shield in preventing the direct access of toxic Cr to plant tissues, thus reducing its uptake in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abdul Baki A, Anderson JD (1973) Vigour determination in soyabean seed by multiple criterion. Crop Sci 13:630–633

    Article  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    PubMed  CAS  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:17–101

    Article  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    Article  CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    Article  CAS  Google Scholar 

  • Coleman RN, Paran JH (1991) Biofilm concentration of chromium. Environ Technol 12:1079–1093

    Article  CAS  Google Scholar 

  • Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324

    Article  PubMed  CAS  Google Scholar 

  • DasGupta SM, Khan N, Nautiyal CS (2006) Biologic control ability of plant growth-promoting Paenibacillus lentimorbus NRRL B-30488 isolated from milk. Curr Microbiol 53:502–505

    Article  PubMed  CAS  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–1479

    CAS  Google Scholar 

  • Fenice M, Selbman L, Federici F, Vassilev N (2000) Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Bioresour Technol 73:157–162

    Article  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    Article  PubMed  CAS  Google Scholar 

  • Hegazi GAE (2011) Viability of encapsulated shoot tips of Capparis orientalis Duh. Nat Sci 9(8):223–228

    Google Scholar 

  • Kathiravan MN, Karthick R, Muthu N, Muthukumar K, Velan M (2010) Sonoassisted microbial reduction of chromium. Appl Biochem Biotechnol 160:2000–2013

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Mishra A, Chauhan PS, Nautiyal CS (2011) Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Ann Appl Biol (in press)

  • Langley S, Beveridge TJ (1999) Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Can J Microbiol 45:616–622

    PubMed  CAS  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth-Sci Rev 51:1–31

    Article  CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol Reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Molina MA, Ramos JL, Espinosa-Urgel M (2003) Plant-associated biofilms. Rev Environ Sci Biotechnol 2:99–108

    Article  Google Scholar 

  • Nautiyal CS (1997) Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiol Ecol 23:145–158

    Article  CAS  Google Scholar 

  • Nautiyal CS, Mehta SD, Singh HB, Pushpangadan P (2006) Synergistic bioinoculant composition comprising bacterial strains of accession nos. NRRL B-30486, NRRL B-30487 and NRRL B-30488 and method of producing said composition thereof. U.S. Patent 7097830

  • Niu C, Gilbert ES (2004) Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70:6951–6956

    Article  PubMed  CAS  Google Scholar 

  • Paul E, Fages J, Blanc P, Goma G, Pareilleux A (1993) Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40:34–39

    Article  CAS  Google Scholar 

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72(3):1988–1996

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-P′erez C, Vargas E, Riveros-Rojas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  PubMed  Google Scholar 

  • Schons PF, Lopes FC, Battestin V, Macedo GA (2011) Immobilization of Paecilomyces variotii tannase and properties of the immobilized enzyme. J Microencapsul 28(3):211–219

    Article  PubMed  CAS  Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2007) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24(6):739–743

    Article  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO4) roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    Article  PubMed  CAS  Google Scholar 

  • Smidsrød O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  PubMed  Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Nautiyal CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56:453–457

    Article  PubMed  CAS  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  PubMed  CAS  Google Scholar 

  • Walker HL, Connick WJ Jr (1983) Sodium alginate for production and formulation of mycoherbicides. Weed Sci 31:333–338

    Google Scholar 

  • Wang YT (2000) Microbial reduction of chromate. In: Lovely DR (ed) Environmental microbe-metal interactions. American Society for Microbiology, Washington, pp 225–235

    Google Scholar 

  • Wani PA, Khan S, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD, Caldwell DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb Ecol 27:279–291

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. J Biochem 57:508–554

    CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Task force grant NWP-006 from Council of Scientific and Industrial Research (CSIR), New Delhi, India. NK thanks CSIR for awarding Senior Research Fellowship.

Conflict of interest

This is to certify that there is no conflict of interest in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Nautiyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, N., Mishra, A., Chauhan, P.S. et al. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie van Leeuwenhoek 101, 453–459 (2012). https://doi.org/10.1007/s10482-011-9637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9637-3

Keywords

Navigation